Chapter 3 Convert inputdata into phyloseq object

r Biocpkg(“phyloseq”) (McMurdie and Holmes 2013) is the most popular Biocondcutor package used by the microbiome research field, and phyloseq-class objects are a great data-standard for microbiota data in R. Therefore, the core functions in XMAS take phyloseq-class object as input. In the phyloseq object, information on OTU abundances, taxonomy of OTUs, the phylogenetic tree and metadata is stored.

This tutorial will introduce you the basic steps to convert results from the in-house pipeline into phyloseq-class object. More importantly on how to look at your data and filter appropriately. We will use the inputs from /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/.

Outline of this Chapter:

3.1 Loading Packages

library(XMAS2)
library(dplyr)
library(tibble)
library(phyloseq)

3.2 Importing Data

3.2.1 Result from dada2

dada2 results from standardized_analytics_workflow_R_function:

  1. /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/16S/process/xdada2/dada2_res.rds

  2. /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/16S/process/fasta2tree/tree.nwk

  3. /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/16S/metadata.txt

dada2_res <- readRDS(
  system.file(
    "extdata", "dada2_res.rds",
    package = "XMAS2"    
    )
)

sam_tab <- read.table(
    system.file(
        "extdata", "dada2_metadata.tsv",
        package = "XMAS2"
    ),
    sep = "\t",
    header = TRUE,
    stringsAsFactors = FALSE
)

tree <- phyloseq::read_tree(
  system.file(
    "extdata", "tree.nwk",
    package = "XMAS2"    
    )
)

3.2.1.1 taxa table

We use import_dada2_taxa to convert dada2_res$tax_tab into our own taxa table

tax_tab <- import_dada2_taxa(dada2_taxa = dada2_res$tax_tab)

head(tax_tab, 1)
##                                                                                                                                                                                                                                                                  Kingdom      
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "k__Bacteria"
##                                                                                                                                                                                                                                                                  Phylum         
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "p__Firmicutes"
##                                                                                                                                                                                                                                                                  Class          
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "c__Clostridia"
##                                                                                                                                                                                                                                                                  Order             
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "o__Clostridiales"
##                                                                                                                                                                                                                                                                  Family              
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "f__Lachnospiraceae"
##                                                                                                                                                                                                                                                                  Genus       
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "g__Blautia"
##                                                                                                                                                                                                                                                                  Species                  
## TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG "s__Blautia_unclassified"

3.2.1.2 otu table

otu_tab <- dada2_res$seq_tab
# Shouldn't use the Total Number as SampleID (wrong: 123456; right: X123456)
rownames(otu_tab) <- paste0("S", rownames(otu_tab))

head(otu_tab[, 1, F])
##       TAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGG
## S6030                                                                                                                                                                                                                                                             1253
## S6032                                                                                                                                                                                                                                                            14677
## S6033                                                                                                                                                                                                                                                             2929
## S6035                                                                                                                                                                                                                                                                0
## S6036                                                                                                                                                                                                                                                             3548
## S6037                                                                                                                                                                                                                                                             8484

3.2.1.3 metadata table

sam_tab <- sam_tab %>% 
  tibble::column_to_rownames("seqID")
# Shouldn't use the Total Number as SampleID (wrong: 123456; right: X123456)
rownames(sam_tab) <- paste0("S", rownames(sam_tab))

head(sam_tab)
##       Group
## S6065    AA
## S6049    AA
## S6043    AA
## S6037    AA
## S6059    AA
## S6060    AA

3.2.1.4 phyloseq object

dada2_ps <- get_dada2_phyloseq(
                  seq_tab = otu_tab, 
                  tax_tab = tax_tab, 
                  sam_tab = sam_tab, 
                  phy_tree = tree)
dada2_ps
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 896 taxa and 24 samples ]
## sample_data() Sample Data:       [ 24 samples by 1 sample variables ]
## tax_table()   Taxonomy Table:    [ 896 taxa by 7 taxonomic ranks ]
## phy_tree()    Phylogenetic Tree: [ 896 tips and 893 internal nodes ]
## refseq()      DNAStringSet:      [ 896 reference sequences ]

we obtain the phyloseq-class object and then use it to perform data analysis.

  • otu_table
dada2_ps@otu_table %>% 
  data.frame() %>% head()
##       S6030 S6032 S6033 S6035 S6036 S6037 S6040 S6043 S6045 S6046 S6048 S6049 S6050 S6054 S6055 S6058 S6059 S6060 S6061 S6063 S6065 S6066
## ASV_1  1253 14677  2929     0  3548  8484 11727  5218  4942  7347  3503  3803 14593  4275  2812     0  6847 17893  2956  3328  6302  8414
## ASV_2  2810  1558  1839 11885     0  5632   631  7326  1809  4781  3476   108  3100    39  3879  6389   298  4995   196 45061   542   357
## ASV_3  7107  2915  2200     0  1232 19675     0  1617   839  9362  4815     0     0  1121 13472     0  1421     0     0     0  9694  4387
## ASV_4     0  2280    94 13775     0  4456   937   746  3730   273    85    64   562   448    18   611    96  5976     0   837     0   706
## ASV_5  6983 15963  1172   256 12140   874  1722   120   210     0   111   802   994  1971    18   517   808   443    48   109     7   122
## ASV_6   489     0   199     0   836     0  8565     0     0  1257     0  5998     0  3093  2091     0 10572     0  8495     0  2703     0
##       S6068 S8005
## ASV_1     0     0
## ASV_2 10870  7325
## ASV_3     0 14797
## ASV_4 17977     0
## ASV_5   546  2516
## ASV_6     0   974
  • tax_table
dada2_ps@tax_table %>%
  data.frame() %>% head()
##           Kingdom            Phylum             Class                Order                Family                           Genus
## ASV_1 k__Bacteria     p__Firmicutes     c__Clostridia     o__Clostridiales    f__Lachnospiraceae                      g__Blautia
## ASV_2 k__Bacteria p__Actinobacteria c__Actinobacteria o__Bifidobacteriales f__Bifidobacteriaceae              g__Bifidobacterium
## ASV_3 k__Bacteria p__Actinobacteria c__Actinobacteria o__Bifidobacteriales f__Bifidobacteriaceae              g__Bifidobacterium
## ASV_4 k__Bacteria     p__Firmicutes     c__Clostridia     o__Clostridiales    f__Lachnospiraceae g__Lachnospiraceae_unclassified
## ASV_5 k__Bacteria     p__Firmicutes        c__Bacilli   o__Lactobacillales   f__Streptococcaceae                g__Streptococcus
## ASV_6 k__Bacteria     p__Firmicutes     c__Clostridia     o__Clostridiales    f__Ruminococcaceae             g__Faecalibacterium
##                                Species
## ASV_1          s__Blautia_unclassified
## ASV_2  s__Bifidobacterium_unclassified
## ASV_3  s__Bifidobacterium_unclassified
## ASV_4  s__Lachnospiraceae_unclassified
## ASV_5    s__Streptococcus_unclassified
## ASV_6 s__Faecalibacterium_unclassified
  • sample_table
dada2_ps@sam_data %>% 
  data.frame() %>% head()
##       Group
## S6030    BB
## S6032    BB
## S6033    BB
## S6035    AA
## S6036    BB
## S6037    AA

3.2.2 Result from Metaphlan

The result of the in-house Metaphlan2/3 pipeline:

  1. /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/MGS/metaphlan2_merged.tsv

  2. /home/xuxiaomin/project/standardized_analytics_workflow_R_function/demo_data/MGS/metadata.txt

metaphlan2_res <- read.table(
    system.file(
        "extdata", "metaphlan2_merged.tsv",
        package = "XMAS2"
    ),
    header = TRUE, 
    stringsAsFactors = FALSE
)
metaphlan2_sam <- read.table(
    system.file(
        "extdata", "metaphlan2_metadata.tsv",
        package = "XMAS2"
    ),
    sep = "\t",
    header = TRUE,
    stringsAsFactors = FALSE
)

3.2.2.1 taxa table

metaphlan2_res_list <- import_metaphlan_taxa(
                          object = metaphlan2_res, 
                          taxa_level = "Species",
                          trim = TRUE)
tax_tab <- metaphlan2_res_list$tax_tab
head(tax_tab)
##                                  Kingdom            Phylum             Class              Order              Family          Genus
## s__Actinomyces_graevenitzii  k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
## s__Actinomyces_johnsonii     k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
## s__Actinomyces_massiliensis  k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
## s__Actinomyces_odontolyticus k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
## s__Actinomyces_oris          k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
## s__Actinomyces_viscosus      k__Bacteria p__Actinobacteria c__Actinobacteria o__Actinomycetales f__Actinomycetaceae g__Actinomyces
##                                                   Species
## s__Actinomyces_graevenitzii   s__Actinomyces_graevenitzii
## s__Actinomyces_johnsonii         s__Actinomyces_johnsonii
## s__Actinomyces_massiliensis   s__Actinomyces_massiliensis
## s__Actinomyces_odontolyticus s__Actinomyces_odontolyticus
## s__Actinomyces_oris                   s__Actinomyces_oris
## s__Actinomyces_viscosus           s__Actinomyces_viscosus

3.2.2.2 otu table

otu_tab <- metaphlan2_res_list$abu_tab
head(otu_tab)
##                                    s1 s2      s3 s4 s5 s6       s7      s8        s9 s10      s11   s12      s13     s14 s15 s16 s17
## s__Actinomyces_graevenitzii  3.58e-05  0 0.0e+00  0  0  0 7.20e-06 0.0e+00 0.0000000   0 1.40e-05 0e+00 0.00e+00 0.0e+00   0   0   0
## s__Actinomyces_johnsonii     0.00e+00  0 0.0e+00  0  0  0 0.00e+00 0.0e+00 0.0000000   0 0.00e+00 0e+00 1.15e-05 0.0e+00   0   0   0
## s__Actinomyces_massiliensis  0.00e+00  0 0.0e+00  0  0  0 2.95e-05 0.0e+00 0.0000000   0 0.00e+00 0e+00 0.00e+00 0.0e+00   0   0   0
## s__Actinomyces_odontolyticus 7.70e-05  0 1.7e-06  0  0  0 2.47e-05 5.8e-06 0.0001175   0 6.16e-05 0e+00 1.66e-05 3.9e-06   0   0   0
## s__Actinomyces_oris          0.00e+00  0 0.0e+00  0  0  0 2.81e-05 0.0e+00 0.0000135   0 0.00e+00 0e+00 0.00e+00 0.0e+00   0   0   0
## s__Actinomyces_viscosus      4.60e-06  0 0.0e+00  0  0  0 0.00e+00 0.0e+00 0.0000039   0 6.20e-06 7e-06 1.10e-06 0.0e+00   0   0   0
##                                  s18      s19 s20 s21      s22 refE
## s__Actinomyces_graevenitzii  6.1e-06 1.60e-06   0   0 0.00e+00    0
## s__Actinomyces_johnsonii     0.0e+00 0.00e+00   0   0 0.00e+00    0
## s__Actinomyces_massiliensis  0.0e+00 0.00e+00   0   0 2.52e-05    0
## s__Actinomyces_odontolyticus 0.0e+00 4.19e-05   0   0 0.00e+00    0
## s__Actinomyces_oris          0.0e+00 0.00e+00   0   0 7.40e-06    0
## s__Actinomyces_viscosus      0.0e+00 0.00e+00   0   0 7.28e-05    0

3.2.2.3 metadata table

sam_tab <- metaphlan2_sam %>% 
  tibble::column_to_rownames("SampleID")
head(sam_tab)
##    Group phynotype
## s1    BB      0.00
## s2    AA      2.50
## s3    BB      0.00
## s4    AA      1.25
## s5    AA     30.00
## s6    AA     15.00

3.2.2.4 phyloseq object

metaphlan2_ps <- get_metaphlan_phyloseq(
                    otu_tab = otu_tab, 
                    sam_tab = sam_tab,
                    tax_tab = tax_tab)
metaphlan2_ps
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 322 taxa and 23 samples ]
## sample_data() Sample Data:       [ 23 samples by 2 sample variables ]
## tax_table()   Taxonomy Table:    [ 322 taxa by 7 taxonomic ranks ]

3.3 Systematic Information

devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.1.3 (2022-03-10)
##  os       macOS Monterey 12.2.1
##  system   x86_64, darwin17.0
##  ui       RStudio
##  language (EN)
##  collate  en_US.UTF-8
##  ctype    en_US.UTF-8
##  tz       Asia/Shanghai
##  date     2023-11-30
##  rstudio  2023.09.0+463 Desert Sunflower (desktop)
##  pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  package              * version   date (UTC) lib source
##  ade4                   1.7-22    2023-02-06 [2] CRAN (R 4.1.2)
##  annotate               1.72.0    2021-10-26 [2] Bioconductor
##  AnnotationDbi          1.60.2    2023-03-10 [2] Bioconductor
##  ape                    5.7-1     2023-03-13 [2] CRAN (R 4.1.2)
##  Biobase                2.54.0    2021-10-26 [2] Bioconductor
##  BiocGenerics           0.40.0    2021-10-26 [2] Bioconductor
##  BiocParallel           1.28.3    2021-12-09 [2] Bioconductor
##  biomformat             1.22.0    2021-10-26 [2] Bioconductor
##  Biostrings             2.62.0    2021-10-26 [2] Bioconductor
##  bit                    4.0.5     2022-11-15 [2] CRAN (R 4.1.2)
##  bit64                  4.0.5     2020-08-30 [2] CRAN (R 4.1.0)
##  bitops                 1.0-7     2021-04-24 [2] CRAN (R 4.1.0)
##  blob                   1.2.4     2023-03-17 [2] CRAN (R 4.1.2)
##  bookdown               0.34      2023-05-09 [2] CRAN (R 4.1.2)
##  bslib                  0.6.0     2023-11-21 [1] CRAN (R 4.1.3)
##  cachem                 1.0.8     2023-05-01 [2] CRAN (R 4.1.2)
##  callr                  3.7.3     2022-11-02 [2] CRAN (R 4.1.2)
##  caTools                1.18.2    2021-03-28 [2] CRAN (R 4.1.0)
##  cli                    3.6.1     2023-03-23 [2] CRAN (R 4.1.2)
##  cluster                2.1.4     2022-08-22 [2] CRAN (R 4.1.2)
##  coda                   0.19-4    2020-09-30 [2] CRAN (R 4.1.0)
##  codetools              0.2-19    2023-02-01 [2] CRAN (R 4.1.2)
##  coin                   1.4-2     2021-10-08 [2] CRAN (R 4.1.0)
##  colorspace             2.1-0     2023-01-23 [2] CRAN (R 4.1.2)
##  conflicted             1.2.0     2023-02-01 [2] CRAN (R 4.1.2)
##  cowplot                1.1.1     2020-12-30 [2] CRAN (R 4.1.0)
##  crayon                 1.5.2     2022-09-29 [2] CRAN (R 4.1.2)
##  data.table             1.14.8    2023-02-17 [2] CRAN (R 4.1.2)
##  DBI                    1.1.3     2022-06-18 [2] CRAN (R 4.1.2)
##  DelayedArray           0.20.0    2021-10-26 [2] Bioconductor
##  DESeq2                 1.34.0    2021-10-26 [2] Bioconductor
##  devtools               2.4.5     2022-10-11 [2] CRAN (R 4.1.2)
##  digest                 0.6.33    2023-07-07 [1] CRAN (R 4.1.3)
##  dplyr                * 1.1.2     2023-04-20 [2] CRAN (R 4.1.2)
##  DT                     0.28      2023-05-18 [2] CRAN (R 4.1.3)
##  edgeR                  3.36.0    2021-10-26 [2] Bioconductor
##  ellipsis               0.3.2     2021-04-29 [2] CRAN (R 4.1.0)
##  emmeans                1.8.7     2023-06-23 [1] CRAN (R 4.1.3)
##  estimability           1.4.1     2022-08-05 [2] CRAN (R 4.1.2)
##  evaluate               0.21      2023-05-05 [2] CRAN (R 4.1.2)
##  FactoMineR             2.8       2023-03-27 [2] CRAN (R 4.1.2)
##  fansi                  1.0.4     2023-01-22 [2] CRAN (R 4.1.2)
##  fastmap                1.1.1     2023-02-24 [2] CRAN (R 4.1.2)
##  flashClust             1.01-2    2012-08-21 [2] CRAN (R 4.1.0)
##  foreach                1.5.2     2022-02-02 [2] CRAN (R 4.1.2)
##  fs                     1.6.2     2023-04-25 [2] CRAN (R 4.1.2)
##  genefilter             1.76.0    2021-10-26 [2] Bioconductor
##  geneplotter            1.72.0    2021-10-26 [2] Bioconductor
##  generics               0.1.3     2022-07-05 [2] CRAN (R 4.1.2)
##  GenomeInfoDb           1.30.1    2022-01-30 [2] Bioconductor
##  GenomeInfoDbData       1.2.7     2022-03-09 [2] Bioconductor
##  GenomicRanges          1.46.1    2021-11-18 [2] Bioconductor
##  ggplot2                3.4.2     2023-04-03 [2] CRAN (R 4.1.2)
##  ggrepel                0.9.3     2023-02-03 [2] CRAN (R 4.1.2)
##  glmnet                 4.1-7     2023-03-23 [2] CRAN (R 4.1.2)
##  glue                   1.6.2     2022-02-24 [2] CRAN (R 4.1.2)
##  gplots                 3.1.3     2022-04-25 [2] CRAN (R 4.1.2)
##  gtable                 0.3.3     2023-03-21 [2] CRAN (R 4.1.2)
##  gtools                 3.9.4     2022-11-27 [2] CRAN (R 4.1.2)
##  highr                  0.10      2022-12-22 [2] CRAN (R 4.1.2)
##  htmltools              0.5.7     2023-11-03 [1] CRAN (R 4.1.3)
##  htmlwidgets            1.6.2     2023-03-17 [2] CRAN (R 4.1.2)
##  httpuv                 1.6.11    2023-05-11 [2] CRAN (R 4.1.3)
##  httr                   1.4.6     2023-05-08 [2] CRAN (R 4.1.2)
##  igraph                 1.5.0     2023-06-16 [1] CRAN (R 4.1.3)
##  IRanges                2.28.0    2021-10-26 [2] Bioconductor
##  iterators              1.0.14    2022-02-05 [2] CRAN (R 4.1.2)
##  jquerylib              0.1.4     2021-04-26 [2] CRAN (R 4.1.0)
##  jsonlite               1.8.7     2023-06-29 [2] CRAN (R 4.1.3)
##  kableExtra             1.3.4     2021-02-20 [2] CRAN (R 4.1.2)
##  KEGGREST               1.34.0    2021-10-26 [2] Bioconductor
##  KernSmooth             2.23-22   2023-07-10 [2] CRAN (R 4.1.3)
##  knitr                  1.43      2023-05-25 [2] CRAN (R 4.1.3)
##  later                  1.3.1     2023-05-02 [2] CRAN (R 4.1.2)
##  lattice                0.21-8    2023-04-05 [2] CRAN (R 4.1.2)
##  leaps                  3.1       2020-01-16 [2] CRAN (R 4.1.0)
##  libcoin                1.0-9     2021-09-27 [2] CRAN (R 4.1.0)
##  lifecycle              1.0.3     2022-10-07 [2] CRAN (R 4.1.2)
##  limma                  3.50.3    2022-04-07 [2] Bioconductor
##  locfit                 1.5-9.8   2023-06-11 [2] CRAN (R 4.1.3)
##  magrittr               2.0.3     2022-03-30 [2] CRAN (R 4.1.2)
##  MASS                   7.3-60    2023-05-04 [2] CRAN (R 4.1.2)
##  Matrix                 1.6-0     2023-07-08 [2] CRAN (R 4.1.3)
##  MatrixGenerics         1.6.0     2021-10-26 [2] Bioconductor
##  matrixStats            1.0.0     2023-06-02 [2] CRAN (R 4.1.3)
##  memoise                2.0.1     2021-11-26 [2] CRAN (R 4.1.0)
##  metagenomeSeq          1.36.0    2021-10-26 [2] Bioconductor
##  mgcv                   1.8-42    2023-03-02 [2] CRAN (R 4.1.2)
##  mime                   0.12      2021-09-28 [2] CRAN (R 4.1.0)
##  miniUI                 0.1.1.1   2018-05-18 [2] CRAN (R 4.1.0)
##  modeltools             0.2-23    2020-03-05 [2] CRAN (R 4.1.0)
##  multcomp               1.4-25    2023-06-20 [2] CRAN (R 4.1.3)
##  multcompView           0.1-9     2023-04-09 [2] CRAN (R 4.1.2)
##  multtest               2.50.0    2021-10-26 [2] Bioconductor
##  munsell                0.5.0     2018-06-12 [2] CRAN (R 4.1.0)
##  mvtnorm                1.2-2     2023-06-08 [2] CRAN (R 4.1.3)
##  nlme                   3.1-162   2023-01-31 [2] CRAN (R 4.1.2)
##  permute                0.9-7     2022-01-27 [2] CRAN (R 4.1.2)
##  phyloseq             * 1.38.0    2021-10-26 [2] Bioconductor
##  pillar                 1.9.0     2023-03-22 [2] CRAN (R 4.1.2)
##  pkgbuild               1.4.2     2023-06-26 [2] CRAN (R 4.1.3)
##  pkgconfig              2.0.3     2019-09-22 [2] CRAN (R 4.1.0)
##  pkgload                1.3.2.1   2023-07-08 [2] CRAN (R 4.1.3)
##  plyr                   1.8.8     2022-11-11 [2] CRAN (R 4.1.2)
##  png                    0.1-8     2022-11-29 [2] CRAN (R 4.1.2)
##  prettyunits            1.1.1     2020-01-24 [2] CRAN (R 4.1.0)
##  processx               3.8.2     2023-06-30 [2] CRAN (R 4.1.3)
##  profvis                0.3.8     2023-05-02 [2] CRAN (R 4.1.2)
##  promises               1.2.0.1   2021-02-11 [2] CRAN (R 4.1.0)
##  ps                     1.7.5     2023-04-18 [2] CRAN (R 4.1.2)
##  purrr                  1.0.1     2023-01-10 [2] CRAN (R 4.1.2)
##  R6                     2.5.1     2021-08-19 [2] CRAN (R 4.1.0)
##  RColorBrewer           1.1-3     2022-04-03 [2] CRAN (R 4.1.2)
##  Rcpp                   1.0.11    2023-07-06 [1] CRAN (R 4.1.3)
##  RCurl                  1.98-1.12 2023-03-27 [2] CRAN (R 4.1.2)
##  remotes                2.4.2     2021-11-30 [2] CRAN (R 4.1.0)
##  reshape2               1.4.4     2020-04-09 [2] CRAN (R 4.1.0)
##  rhdf5                  2.38.1    2022-03-10 [2] Bioconductor
##  rhdf5filters           1.6.0     2021-10-26 [2] Bioconductor
##  Rhdf5lib               1.16.0    2021-10-26 [2] Bioconductor
##  rlang                  1.1.1     2023-04-28 [1] CRAN (R 4.1.2)
##  rmarkdown              2.23      2023-07-01 [2] CRAN (R 4.1.3)
##  RSQLite                2.3.1     2023-04-03 [2] CRAN (R 4.1.2)
##  rstudioapi             0.15.0    2023-07-07 [2] CRAN (R 4.1.3)
##  rvest                  1.0.3     2022-08-19 [2] CRAN (R 4.1.2)
##  S4Vectors              0.32.4    2022-03-29 [2] Bioconductor
##  sandwich               3.0-2     2022-06-15 [2] CRAN (R 4.1.2)
##  sass                   0.4.6     2023-05-03 [2] CRAN (R 4.1.2)
##  scales                 1.2.1     2022-08-20 [2] CRAN (R 4.1.2)
##  scatterplot3d          0.3-44    2023-05-05 [2] CRAN (R 4.1.2)
##  sessioninfo            1.2.2     2021-12-06 [2] CRAN (R 4.1.0)
##  shape                  1.4.6     2021-05-19 [2] CRAN (R 4.1.0)
##  shiny                  1.7.4.1   2023-07-06 [2] CRAN (R 4.1.3)
##  stringi                1.7.12    2023-01-11 [2] CRAN (R 4.1.2)
##  stringr                1.5.0     2022-12-02 [2] CRAN (R 4.1.2)
##  SummarizedExperiment   1.24.0    2021-10-26 [2] Bioconductor
##  survival               3.5-5     2023-03-12 [2] CRAN (R 4.1.2)
##  svglite                2.1.1     2023-01-10 [2] CRAN (R 4.1.2)
##  systemfonts            1.0.4     2022-02-11 [2] CRAN (R 4.1.2)
##  TH.data                1.1-2     2023-04-17 [2] CRAN (R 4.1.2)
##  tibble               * 3.2.1     2023-03-20 [2] CRAN (R 4.1.2)
##  tidyr                  1.3.0     2023-01-24 [2] CRAN (R 4.1.2)
##  tidyselect             1.2.0     2022-10-10 [2] CRAN (R 4.1.2)
##  urlchecker             1.0.1     2021-11-30 [2] CRAN (R 4.1.0)
##  usethis                2.2.2     2023-07-06 [2] CRAN (R 4.1.3)
##  utf8                   1.2.3     2023-01-31 [2] CRAN (R 4.1.2)
##  vctrs                  0.6.3     2023-06-14 [1] CRAN (R 4.1.3)
##  vegan                  2.6-4     2022-10-11 [2] CRAN (R 4.1.2)
##  viridisLite            0.4.2     2023-05-02 [2] CRAN (R 4.1.2)
##  webshot                0.5.5     2023-06-26 [2] CRAN (R 4.1.3)
##  withr                  2.5.0     2022-03-03 [2] CRAN (R 4.1.2)
##  Wrench                 1.12.0    2021-10-26 [2] Bioconductor
##  xfun                   0.40      2023-08-09 [1] CRAN (R 4.1.3)
##  XMAS2                * 2.2.0     2023-11-30 [1] local
##  XML                    3.99-0.14 2023-03-19 [2] CRAN (R 4.1.2)
##  xml2                   1.3.5     2023-07-06 [2] CRAN (R 4.1.3)
##  xtable                 1.8-4     2019-04-21 [2] CRAN (R 4.1.0)
##  XVector                0.34.0    2021-10-26 [2] Bioconductor
##  yaml                   2.3.7     2023-01-23 [2] CRAN (R 4.1.2)
##  zlibbioc               1.40.0    2021-10-26 [2] Bioconductor
##  zoo                    1.8-12    2023-04-13 [2] CRAN (R 4.1.2)
## 
##  [1] /Users/zouhua/Library/R/x86_64/4.1/library
##  [2] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

References

McMurdie, Paul J, and Susan Holmes. 2013. “Phyloseq: An r Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data.” PloS One 8 (4): e61217.