Chapter 10 Test Example

10.1 Loading packages

library(XMAS2)
library(dplyr)
library(tibble)
library(phyloseq)
library(ggplot2)
library(ggpubr)
library(readxl)

10.2 Loading data

metaphlan2_res <- read.table("DataSet/RawData/merged_metaphlan2.tsv",
                             header = TRUE, stringsAsFactors = FALSE) %>%
  tibble::rownames_to_column("ID")

metadata <- readxl::read_xlsx("DataSet/RawData/诺禾宏基因组678月-ZH.xlsx", sheet = 3)

10.3 Step1: Convert inputs into phyloseq data

metaphlan2_res_list <- import_metaphlan_taxa(data_metaphlan2 = metaphlan2_res, 
                                             taxa_level = "Species")
tax_tab <- metaphlan2_res_list$tax_tab

otu_tab <- metaphlan2_res_list$abu_tab
colnames(otu_tab) <- gsub("X", "S_", colnames(otu_tab))

sam_tab <- metadata %>% data.frame() %>%
  dplyr::mutate(Group=ifelse(SampleType == "粪便", "Stool", 
                             ifelse(SampleType == "QC", "QC", "Product"))) %>%
  dplyr::select(SampleTubeID, Group, everything())
rownames(sam_tab) <- paste0("S_", sam_tab$SeqID_MGS)

overlap_samples <- dplyr::intersect(rownames(sam_tab), colnames(otu_tab))

otu_tab_cln <- otu_tab[, match(overlap_samples, colnames(otu_tab))]
sam_tab_cln <- sam_tab[match(overlap_samples, rownames(sam_tab)), ]
rownames(sam_tab_cln) <- overlap_samples

metaphlan2_ps <- get_metaphlan_phyloseq(
                    otu_tab = otu_tab_cln, 
                    sam_tab = sam_tab_cln,
                    tax_tab = tax_tab)
metaphlan2_ps
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 315 taxa and 145 samples ]
## sample_data() Sample Data:       [ 145 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 315 taxa by 7 taxonomic ranks ]
if (!dir.exists("DataSet/Step1/")) {
  dir.create("DataSet/Step1/")
}
saveRDS(metaphlan2_ps, "DataSet/Step1/Donor_MGS_phyloseq.RDS", compress = TRUE)

10.4 Step2: Transform limit of detection (LOD) into Zeros

# species
metaphlan2_ps_LOD_species <- aggregate_LOD_taxa(ps = metaphlan2_ps, 
                                                taxa_level = "Species", 
                                                cutoff = 1e-04)

# genus
metaphlan2_ps_LOD_genus <- aggregate_LOD_taxa(ps = metaphlan2_ps, 
                                              taxa_level = "Genus", 
                                              cutoff = 1e-04)

# order
metaphlan2_ps_LOD_order <- aggregate_LOD_taxa(ps = metaphlan2_ps, 
                                              taxa_level = "Order", 
                                              cutoff = 1e-04)

if (!dir.exists("DataSet/Step2/")) {
  dir.create("DataSet/Step2/")
}
saveRDS(metaphlan2_ps_LOD_species, "DataSet/Step2/Donor_MGS_phyloseq_LOD_species.RDS", compress = TRUE)
saveRDS(metaphlan2_ps_LOD_genus, "DataSet/Step2/Donor_MGS_phyloseq_LOD_genus.RDS", compress = TRUE)
saveRDS(metaphlan2_ps_LOD_order, "DataSet/Step2/Donor_MGS_phyloseq_LOD_order.RDS", compress = TRUE)

10.5 Step3: BRS checking

metaphlan2_ps <- readRDS("DataSet/Step1/Donor_MGS_phyloseq.RDS")
metaphlan2_ps_LOD_species <- aggregate_LOD_taxa(ps = metaphlan2_ps, 
                                                taxa_level = "Species", 
                                                cutoff = 1e-04)
tail(metaphlan2_ps_LOD_species@sam_data %>% data.frame())
##             SampleTubeID   Group Date_Sequencing ProductID SampleType ProductBatch Date_Sampling Date_Receiving SeqID_MGS SeqID_16s
## S_7769      GGM50-210730   Stool      2021-08-03       M50       粪便 CYM50-210735    2021.07.30     2021-08-06      7769      7929
## S_7770 CYM50-210735-0727 Product      2021-08-03       M50   肠菌胶囊 CYM50-210735    2021.07.27     2021-08-06      7770      7930
## S_7771 CYM50-210735-0728 Product      2021-08-03       M50   肠菌胶囊 CYM50-210735    2021.07.28     2021-08-06      7771      7931
## S_7772 CYM50-210735-0729 Product      2021-08-03       M50   肠菌胶囊 CYM50-210735    2021.07.29     2021-08-06      7772      7932
## S_7773 CYM50-210735-0730 Product      2021-08-03       M50   肠菌胶囊 CYM50-210735    2021.07.30     2021-08-06      7773      7933
## S_7222         Community      QC            <NA>       Ref         QC         <NA>          <NA>           <NA>      7222      7327
##                                                    Pipeline_MGS                                                         Pipeline_16s
## S_7769 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
## S_7770 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
## S_7771 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
## S_7772 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
## S_7773 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
## S_7222 /share/work/HPC/work_tmp/PipelineJob_180_20210923/output /share/projects/Engineering/pipeline_output/PipelineJob_304_20211203
run_RefCheck2(
    ps = metaphlan2_ps_LOD_species,
    BRS_ID = "S_7222",
    Ref_type = "MGS"L)
## Noting: the Reference Matrix is for MGS
## 
## ############Matched baterica of the BRS sample#############
## The number of BRS' bacteria matched the Reference Matrix is [2]
## s__Enterococcus_faecalis
## s__Escherichia_coli
## The number of bacteria unmatched the Reference Matrix is [24]
## s__Propionibacterium_acnes
## s__Bifidobacterium_adolescentis
## s__Bifidobacterium_bifidum
## s__Bifidobacterium_longum
## s__Bifidobacterium_pseudocatenulatum
## s__Collinsella_aerofaciens
## s__Eggerthella_unclassified
## s__Bacteroides_fragilis
## s__Bacteroides_intestinalis
## s__Bacteroides_ovatus
## s__Bacteroides_thetaiotaomicron
## s__Bacteroides_uniformis
## s__Bacteroides_vulgatus
## s__Bacteroides_xylanisolvens
## s__Parabacteroides_goldsteinii
## s__Prevotella_copri
## s__Enterococcus_faecium
## s__Lactobacillus_pentosus
## s__Lactobacillus_salivarius
## s__Streptococcus_salivarius
## s__Coprococcus_comes
## s__Dorea_formicigenerans
## s__Roseburia_hominis
## s__Faecalibacterium_prausnitzii
## The number of the additional bacteria compared to the Reference Matrix is [2]
## ###########################################################
## 
## ##################Status of the BRS sample##################
## Whether the BRS has the all bateria of Reference Matrix: FALSE
## Correlation Coefficient of the BRS is: 2.22e-16
## Bray Curtis of the BRS is: 0.1017
## Impurity of the BRS is: 72.95
## ###########################################################
## #####Final Evaluation Results of the BRS #######
## The BRS of sequencing dataset didn't pass the cutoff of the Reference Matrix
## ###########################################################
## $Matrix
##                                       7682     7683     7684     7685     7842     7843     7844     7845   S_7222        mean
## Propionibacterium_acnes            0.28649  0.22355  0.32199  0.28276  0.37568  0.44201  0.41135  0.39489       NA  0.30430222
## Bifidobacterium_adolescentis       7.05611  6.28460  6.57297  6.25448  4.69357  4.80628  4.94943  4.84278       NA  5.05113556
## Bifidobacterium_bifidum            1.32803  1.19346  1.26883  1.05154  1.34640  1.40471  1.43721  1.48097       NA  1.16790556
## Bifidobacterium_longum            10.31832  9.25812  9.69184  7.76031 11.03311 11.61484 12.29030 11.69019       NA  9.29522556
## Bifidobacterium_pseudocatenulatum  6.89760  6.36177  7.39605  5.76804  6.19464  6.47094  7.41615  6.27837       NA  5.86484000
## Collinsella_aerofaciens            0.56189  0.53249  0.60476  0.47934  0.65513  0.68833  0.76063  0.66896       NA  0.55017000
## Eggerthella_unclassified           1.21416  1.06143  1.19122  0.85743  1.36030  1.48457  1.61204  1.50700       NA  1.14312778
## Bacteroides_fragilis               6.56752  7.19828  7.27658  7.31998  7.10174  6.70626  6.60219  6.11088       NA  6.09815889
## Bacteroides_intestinalis           0.09448  0.09550  0.10216  0.09326  0.08448  0.09556  0.08852  0.10469       NA  0.08429444
## Bacteroides_ovatus                 3.08552  3.27226  3.10904  3.24565  3.51376  3.50063  3.37872  3.42300       NA  2.94762000
## Bacteroides_thetaiotaomicron       3.24207  3.31897  3.22418  3.43809  3.35611  3.38323  3.29098  3.30355       NA  2.95079778
## Bacteroides_uniformis              2.24271  2.24035  1.92015  2.18435  2.43230  2.38180  2.13830  2.41437       NA  1.99492556
## Bacteroides_vulgatus               3.06672  3.20369  3.14979  3.15352  3.24822  3.09280  3.13038  3.06113       NA  2.78958333
## Bacteroides_xylanisolvens          1.55687  1.84824  1.91166  1.85273  1.75220  1.74002  1.69811  1.67676       NA  1.55962111
## Parabacteroides_goldsteinii        5.92564  5.95499  6.04638  5.85282  6.85811  6.50800  6.35758  6.96646       NA  5.60777556
## Prevotella_copri                   2.03757  1.99619  1.92504  2.15422  1.57638  1.60584  1.57913  1.59224       NA  1.60740111
## Enterococcus_faecalis             11.46695 12.46200 11.92117 11.95884 13.71474 13.67805 13.21782 13.27297 17.19286 13.20948889
## Enterococcus_faecium               4.57147  4.64943  4.52463  4.76407  5.45590  5.17641  5.15276  5.24896       NA  4.39373667
## Lactobacillus_pentosus             0.75844  0.75524  0.72958  0.80796  0.91548  0.89940  0.81308  0.94831       NA  0.73638778
## Lactobacillus_salivarius           4.89005  5.18462  5.12745  7.79194  2.72469  2.25673  2.10356  2.02202       NA  3.56678444
## Streptococcus_salivarius           3.54220  3.74119  3.62036  4.01546  2.90216  2.70193  2.61760  2.57348       NA  2.85715333
## Coprococcus_comes                  2.28009  2.42978  2.25227  2.82904  1.21527  1.16485  1.07160  1.07834       NA  1.59124889
## Dorea_formicigenerans              4.83413  5.02149  5.18268  5.56891  3.34720  3.09877  3.08677  2.70732       NA  3.64969667
## Roseburia_hominis                  0.04384  0.04183  0.04107  0.02304  0.03853  0.03464  0.03532  0.03597       NA  0.03269333
## Faecalibacterium_prausnitzii       0.65572  0.60153  0.60112  0.62079  0.54147  0.55383  0.58806  0.54655       NA  0.52323000
## Escherichia_coli                   8.76957  8.33337  7.70416  8.11247 10.44118 10.33823  9.96261 11.06988  9.85431  9.39842000
## Impurity_level                     2.70584  2.73563  2.58287  1.75896  3.12125  4.17134  4.20980  4.97996 72.95000 11.02396111
##                                                                                Evaluation
## Propionibacterium_acnes           S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bifidobacterium_adolescentis      S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bifidobacterium_bifidum           S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bifidobacterium_longum            S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bifidobacterium_pseudocatenulatum S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Collinsella_aerofaciens           S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Eggerthella_unclassified          S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_fragilis              S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_intestinalis          S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_ovatus                S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_thetaiotaomicron      S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_uniformis             S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_vulgatus              S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Bacteroides_xylanisolvens         S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Parabacteroides_goldsteinii       S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Prevotella_copri                  S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Enterococcus_faecalis             S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Enterococcus_faecium              S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Lactobacillus_pentosus            S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Lactobacillus_salivarius          S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Streptococcus_salivarius          S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Coprococcus_comes                 S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Dorea_formicigenerans             S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Roseburia_hominis                 S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Faecalibacterium_prausnitzii      S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Escherichia_coli                  S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## Impurity_level                    S_7222 didn't pass the threshold (2023-10-27 16:59:47).
## 
## $Assess
##          Gold_Cutoff       BRS
## Coef          0.8726 2.220e-16
## Bray          0.2064 1.017e-01
## Impurity      6.4400 7.295e+01
metaphlan2_ps_LOD_species_remove_BRS <- get_GroupPhyloseq(
                                           ps = metaphlan2_ps_LOD_species,
                                           group = "Group",
                                           group_names = "QC",
                                           discard = TRUE)
metaphlan2_ps_LOD_species_remove_BRS
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 180 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 180 taxa by 7 taxonomic ranks ]
if (!dir.exists("DataSet/Step3/")) {
  dir.create("DataSet/Step3/")
}
saveRDS(metaphlan2_ps_LOD_species_remove_BRS, "DataSet/Step3/Donor_MGS_phyloseq_LOD_species_remove_BRS.RDS", compress = TRUE)

10.6 Step4: Extracting specific taxonomic level

  • Removing spike-in sample (BRS)
metaphlan2_ps <- readRDS("DataSet/Step1/Donor_MGS_phyloseq.RDS")
metaphlan2_ps_remove_BRS <- get_GroupPhyloseq(
                               ps = metaphlan2_ps,
                               group = "Group",
                               group_names = "QC",
                               discard = TRUE)
metaphlan2_ps_LOD_species_remove_BRS
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 180 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 180 taxa by 7 taxonomic ranks ]
  • Species
metaphlan2_ps_remove_BRS_LOD_species <- aggregate_LOD_taxa(
                                                ps = metaphlan2_ps_remove_BRS, 
                                                taxa_level = "Species", 
                                                cutoff = 1e-04)
metaphlan2_ps_remove_BRS_LOD_species
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 180 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 180 taxa by 7 taxonomic ranks ]
  • Genus
metaphlan2_ps_remove_BRS_LOD_genus <- aggregate_LOD_taxa(
                                              ps = metaphlan2_ps_remove_BRS, 
                                              taxa_level = "Genus", 
                                              cutoff = 1e-04)
metaphlan2_ps_remove_BRS_LOD_genus
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 67 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 67 taxa by 6 taxonomic ranks ]
  • Phylum
metaphlan2_ps_remove_BRS_LOD_phylum <- aggregate_LOD_taxa(
                                               ps = metaphlan2_ps_remove_BRS, 
                                               taxa_level = "Phylum", 
                                               cutoff = 1e-04)
metaphlan2_ps_remove_BRS_LOD_phylum
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 7 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 7 taxa by 2 taxonomic ranks ]
  • output
if (!dir.exists("DataSet/Step4/")) {
  dir.create("DataSet/Step4/")
}
saveRDS(metaphlan2_ps_remove_BRS_LOD_species, "DataSet/Step4/Donor_MGS_phyloseq_remove_BRS_LOD_species.RDS", compress = TRUE)
saveRDS(metaphlan2_ps_remove_BRS_LOD_genus, "DataSet/Step4/Donor_MGS_phyloseq_remove_BRS_LOD_genus.RDS", compress = TRUE)
saveRDS(metaphlan2_ps_remove_BRS_LOD_phylum, "DataSet/Step4/Donor_MGS_phyloseq_remove_BRS_LOD_phylum.RDS", compress = TRUE)

10.7 Step5: GlobalView

metaphlan2_ps_remove_BRS_LOD_species <- readRDS("DataSet/Step4/Donor_MGS_phyloseq_remove_BRS_LOD_species.RDS")

# alpha
metaphlan2_ps_remove_BRS_species_alpha <- run_alpha_diversity(
                                            ps = metaphlan2_ps_remove_BRS_LOD_species, 
                                            measures = c("Shannon", "Simpson", "InvSimpson"))
plot_boxplot(data = metaphlan2_ps_remove_BRS_species_alpha,
             y_index = c("Shannon", "Simpson", "InvSimpson"),
             group = "Group",
             group_names = c("Stool", "Product"),
             group_color = c("red", "blue"))
diversity and ordination and composition(Example)

Figure 10.1: diversity and ordination and composition(Example)

# beta
metaphlan2_ps_remove_BRS_species_beta <- run_beta_diversity(
                                            ps = metaphlan2_ps_remove_BRS_LOD_species, 
                                            method = "bray")
plot_distance_corrplot(datMatrix = metaphlan2_ps_remove_BRS_species_beta$BetaDistance)
diversity and ordination and composition(Example)

Figure 10.2: diversity and ordination and composition(Example)

# permanova
run_permanova(ps = metaphlan2_ps_remove_BRS_LOD_species, 
              method = "bray", 
              columns = "Group")
##       SumsOfSample Df SumsOfSqs  MeanSqs  F.Model         R2 Pr(>F) AdjustedPvalue
## Group          144  1  1.328635 1.328635 6.307557 0.04253025  0.001          0.001
# beta dispersion
beta_df <- run_beta_diversity(ps = metaphlan2_ps_remove_BRS_LOD_species, 
                              method = "bray", 
                              group = "Group")
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##            Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)
## Groups      1 0.01652 0.016518 1.1697    999  0.282
## Residuals 142 2.00532 0.014122                     
## 
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
##         Product Stool
## Product         0.281
## Stool   0.28129
# ordination
metaphlan2_ps_ordination <- run_ordination(
                       ps = metaphlan2_ps_remove_BRS_LOD_species,
                       group = "Group",
                       method = "PCoA")

plot_Ordination(ResultList = metaphlan2_ps_ordination, 
                group = "Group", 
                group_names = c("Stool", "Product"),
                group_color = c("blue", "red"))
diversity and ordination and composition(Example)

Figure 10.3: diversity and ordination and composition(Example)

# Microbial composition
plot_stacked_bar_XIVZ(
        phyloseq = metaphlan2_ps_remove_BRS_LOD_species,
        level = "Phylum",
        feature = "Group")
diversity and ordination and composition(Example)

Figure 10.4: diversity and ordination and composition(Example)

10.8 Step6: Differential Analysis

metaphlan2_ps_remove_BRS_LOD_species <- readRDS("DataSet/Step4/Donor_MGS_phyloseq_remove_BRS_LOD_species.RDS")

# filter & trim
metaphlan2_ps_remove_BRS_species_filter <- run_filter(ps = metaphlan2_ps_remove_BRS_LOD_species, 
                                                      cutoff = 1e-4, 
                                                      unclass = TRUE)
metaphlan2_ps_remove_BRS_species_filter_trim <- run_trim(object = metaphlan2_ps_remove_BRS_species_filter, 
                                                         cutoff = 0.1, trim = "feature")
metaphlan2_ps_remove_BRS_species_filter_trim
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 110 taxa and 144 samples ]
## sample_data() Sample Data:       [ 144 samples by 12 sample variables ]
## tax_table()   Taxonomy Table:    [ 110 taxa by 7 taxonomic ranks ]
# lefse
# metaphlan2_ps_lefse <- run_lefse(
#                           ps = metaphlan2_ps_remove_BRS_species_filter_trim,
#                           group = "Group",
#                           group_names = c("Stool", "Product"),
#                           norm = "CPM",
#                           Lda = 2)
metaphlan2_ps_lefse <- run_lefse2(
                          ps = metaphlan2_ps_remove_BRS_species_filter_trim,
                          group = "Group",
                          group_names = c("Stool", "Product"),
                          norm = "CPM",
                          lda_cutoff = 2)

# # don't run this code when you do lefse in reality
# metaphlan2_ps_lefse$LDA_Score <- metaphlan2_ps_lefse$LDA_Score * 1000
plot_lefse(
    da_res = metaphlan2_ps_lefse,
    x_index = "LDA_Score",
    x_index_cutoff = 2,
    group_color = c("green", "red"))
Differential Analysis (Example)

Figure 10.5: Differential Analysis (Example)

metaphlan2_ps_wilcox <- run_wilcox(
                          ps = metaphlan2_ps_remove_BRS_species_filter_trim,
                          group = "Group",
                          group_names = c("Stool", "Product"))
plot_volcano(
    da_res = metaphlan2_ps_wilcox,
    group_names = c("Stool", "Product"),
    x_index = "Log2FoldChange (Rank)\nStool_vs_Product",
    x_index_cutoff = 0.5,
    y_index = "Pvalue",
    y_index_cutoff = 0.05,
    group_color = c("red", "grey", "blue"),
    topN = 5)
Differential Analysis (Example)

Figure 10.6: Differential Analysis (Example)

if (!dir.exists("DataSet/Step8/")) {
  dir.create("DataSet/Step8/")
}
saveRDS(metaphlan2_ps_remove_BRS_species_filter_trim, "DataSet/Step6/Donor_MGS_phyloseq_remove_BRS_species_filter_trim.RDS", compress = TRUE)

10.9 Systematic Information

devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.1.3 (2022-03-10)
##  os       macOS Monterey 12.2.1
##  system   x86_64, darwin17.0
##  ui       RStudio
##  language (EN)
##  collate  en_US.UTF-8
##  ctype    en_US.UTF-8
##  tz       Asia/Shanghai
##  date     2023-10-27
##  rstudio  2023.09.0+463 Desert Sunflower (desktop)
##  pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  package              * version   date (UTC) lib source
##  abind                  1.4-5     2016-07-21 [2] CRAN (R 4.1.0)
##  ade4                   1.7-22    2023-02-06 [2] CRAN (R 4.1.2)
##  ALDEx2                 1.30.0    2022-11-01 [2] Bioconductor
##  annotate               1.72.0    2021-10-26 [2] Bioconductor
##  AnnotationDbi          1.60.2    2023-03-10 [2] Bioconductor
##  ape                  * 5.7-1     2023-03-13 [2] CRAN (R 4.1.2)
##  askpass                1.1       2019-01-13 [2] CRAN (R 4.1.0)
##  backports              1.4.1     2021-12-13 [2] CRAN (R 4.1.0)
##  base64enc              0.1-3     2015-07-28 [2] CRAN (R 4.1.0)
##  bayesm                 3.1-5     2022-12-02 [2] CRAN (R 4.1.2)
##  Biobase              * 2.54.0    2021-10-26 [2] Bioconductor
##  BiocGenerics         * 0.40.0    2021-10-26 [2] Bioconductor
##  BiocParallel           1.28.3    2021-12-09 [2] Bioconductor
##  biomformat             1.22.0    2021-10-26 [2] Bioconductor
##  Biostrings             2.62.0    2021-10-26 [2] Bioconductor
##  bit                    4.0.5     2022-11-15 [2] CRAN (R 4.1.2)
##  bit64                  4.0.5     2020-08-30 [2] CRAN (R 4.1.0)
##  bitops                 1.0-7     2021-04-24 [2] CRAN (R 4.1.0)
##  blob                   1.2.4     2023-03-17 [2] CRAN (R 4.1.2)
##  bookdown               0.34      2023-05-09 [2] CRAN (R 4.1.2)
##  broom                  1.0.5     2023-06-09 [2] CRAN (R 4.1.3)
##  bslib                  0.5.0     2023-06-09 [2] CRAN (R 4.1.3)
##  cachem                 1.0.8     2023-05-01 [2] CRAN (R 4.1.2)
##  callr                  3.7.3     2022-11-02 [2] CRAN (R 4.1.2)
##  car                    3.1-2     2023-03-30 [2] CRAN (R 4.1.2)
##  carData                3.0-5     2022-01-06 [2] CRAN (R 4.1.2)
##  caTools                1.18.2    2021-03-28 [2] CRAN (R 4.1.0)
##  cccd                   1.6       2022-04-08 [2] CRAN (R 4.1.2)
##  cellranger             1.1.0     2016-07-27 [2] CRAN (R 4.1.0)
##  checkmate              2.2.0     2023-04-27 [2] CRAN (R 4.1.2)
##  class                  7.3-22    2023-05-03 [2] CRAN (R 4.1.2)
##  classInt               0.4-9     2023-02-28 [2] CRAN (R 4.1.2)
##  cli                    3.6.1     2023-03-23 [2] CRAN (R 4.1.2)
##  cluster                2.1.4     2022-08-22 [2] CRAN (R 4.1.2)
##  coda                   0.19-4    2020-09-30 [2] CRAN (R 4.1.0)
##  codetools              0.2-19    2023-02-01 [2] CRAN (R 4.1.2)
##  coin                   1.4-2     2021-10-08 [2] CRAN (R 4.1.0)
##  colorspace             2.1-0     2023-01-23 [2] CRAN (R 4.1.2)
##  compositions           2.0-6     2023-04-13 [2] CRAN (R 4.1.2)
##  conflicted           * 1.2.0     2023-02-01 [2] CRAN (R 4.1.2)
##  corpcor                1.6.10    2021-09-16 [2] CRAN (R 4.1.0)
##  corrplot               0.92      2021-11-18 [2] CRAN (R 4.1.0)
##  cowplot                1.1.1     2020-12-30 [2] CRAN (R 4.1.0)
##  crayon                 1.5.2     2022-09-29 [2] CRAN (R 4.1.2)
##  crosstalk              1.2.0     2021-11-04 [2] CRAN (R 4.1.0)
##  data.table             1.14.8    2023-02-17 [2] CRAN (R 4.1.2)
##  DBI                    1.1.3     2022-06-18 [2] CRAN (R 4.1.2)
##  DelayedArray           0.20.0    2021-10-26 [2] Bioconductor
##  deldir                 1.0-9     2023-05-17 [2] CRAN (R 4.1.3)
##  DEoptimR               1.0-14    2023-06-09 [2] CRAN (R 4.1.3)
##  DESeq2                 1.34.0    2021-10-26 [2] Bioconductor
##  devtools             * 2.4.5     2022-10-11 [2] CRAN (R 4.1.2)
##  digest                 0.6.33    2023-07-07 [1] CRAN (R 4.1.3)
##  doParallel             1.0.17    2022-02-07 [2] CRAN (R 4.1.2)
##  doSNOW                 1.0.20    2022-02-04 [2] CRAN (R 4.1.2)
##  dplyr                * 1.1.2     2023-04-20 [2] CRAN (R 4.1.2)
##  DT                     0.28      2023-05-18 [2] CRAN (R 4.1.3)
##  dynamicTreeCut         1.63-1    2016-03-11 [2] CRAN (R 4.1.0)
##  e1071                  1.7-13    2023-02-01 [2] CRAN (R 4.1.2)
##  edgeR                  3.36.0    2021-10-26 [2] Bioconductor
##  ellipsis               0.3.2     2021-04-29 [2] CRAN (R 4.1.0)
##  emmeans                1.8.7     2023-06-23 [1] CRAN (R 4.1.3)
##  estimability           1.4.1     2022-08-05 [2] CRAN (R 4.1.2)
##  evaluate               0.21      2023-05-05 [2] CRAN (R 4.1.2)
##  FactoMineR             2.8       2023-03-27 [2] CRAN (R 4.1.2)
##  fansi                  1.0.4     2023-01-22 [2] CRAN (R 4.1.2)
##  farver                 2.1.1     2022-07-06 [2] CRAN (R 4.1.2)
##  fastcluster            1.2.3     2021-05-24 [2] CRAN (R 4.1.0)
##  fastmap                1.1.1     2023-02-24 [2] CRAN (R 4.1.2)
##  fdrtool                1.2.17    2021-11-13 [2] CRAN (R 4.1.0)
##  filematrix             1.3       2018-02-27 [2] CRAN (R 4.1.0)
##  flashClust             1.01-2    2012-08-21 [2] CRAN (R 4.1.0)
##  FNN                    1.1.3.2   2023-03-20 [2] CRAN (R 4.1.2)
##  foreach                1.5.2     2022-02-02 [2] CRAN (R 4.1.2)
##  foreign                0.8-84    2022-12-06 [2] CRAN (R 4.1.2)
##  forestplot             3.1.1     2022-12-06 [2] CRAN (R 4.1.2)
##  formatR                1.14      2023-01-17 [2] CRAN (R 4.1.2)
##  Formula                1.2-5     2023-02-24 [2] CRAN (R 4.1.2)
##  fs                     1.6.2     2023-04-25 [2] CRAN (R 4.1.2)
##  futile.logger        * 1.4.3     2016-07-10 [2] CRAN (R 4.1.0)
##  futile.options         1.0.1     2018-04-20 [2] CRAN (R 4.1.0)
##  genefilter             1.76.0    2021-10-26 [2] Bioconductor
##  geneplotter            1.72.0    2021-10-26 [2] Bioconductor
##  generics               0.1.3     2022-07-05 [2] CRAN (R 4.1.2)
##  GenomeInfoDb         * 1.30.1    2022-01-30 [2] Bioconductor
##  GenomeInfoDbData       1.2.7     2022-03-09 [2] Bioconductor
##  GenomicRanges        * 1.46.1    2021-11-18 [2] Bioconductor
##  ggiraph                0.8.7     2023-03-17 [2] CRAN (R 4.1.2)
##  ggiraphExtra           0.3.0     2020-10-06 [2] CRAN (R 4.1.2)
##  ggplot2              * 3.4.2     2023-04-03 [2] CRAN (R 4.1.2)
##  ggpubr               * 0.6.0     2023-02-10 [2] CRAN (R 4.1.2)
##  ggrepel                0.9.3     2023-02-03 [2] CRAN (R 4.1.2)
##  ggsci                  3.0.0     2023-03-08 [2] CRAN (R 4.1.2)
##  ggsignif               0.6.4     2022-10-13 [2] CRAN (R 4.1.2)
##  ggVennDiagram          1.2.2     2022-09-08 [2] CRAN (R 4.1.2)
##  glasso                 1.11      2019-10-01 [2] CRAN (R 4.1.0)
##  glmnet                 4.1-7     2023-03-23 [2] CRAN (R 4.1.2)
##  glue                 * 1.6.2     2022-02-24 [2] CRAN (R 4.1.2)
##  Gmisc                * 3.0.2     2023-03-13 [2] CRAN (R 4.1.2)
##  GO.db                  3.14.0    2022-04-11 [2] Bioconductor
##  gplots                 3.1.3     2022-04-25 [2] CRAN (R 4.1.2)
##  gridExtra              2.3       2017-09-09 [2] CRAN (R 4.1.0)
##  gtable                 0.3.3     2023-03-21 [2] CRAN (R 4.1.2)
##  gtools                 3.9.4     2022-11-27 [2] CRAN (R 4.1.2)
##  highr                  0.10      2022-12-22 [2] CRAN (R 4.1.2)
##  Hmisc                  5.1-0     2023-05-08 [2] CRAN (R 4.1.2)
##  hms                    1.1.3     2023-03-21 [2] CRAN (R 4.1.2)
##  htmlTable            * 2.4.1     2022-07-07 [2] CRAN (R 4.1.2)
##  htmltools              0.5.5     2023-03-23 [2] CRAN (R 4.1.2)
##  htmlwidgets            1.6.2     2023-03-17 [2] CRAN (R 4.1.2)
##  httpuv                 1.6.11    2023-05-11 [2] CRAN (R 4.1.3)
##  httr                   1.4.6     2023-05-08 [2] CRAN (R 4.1.2)
##  huge                   1.3.5     2021-06-30 [2] CRAN (R 4.1.0)
##  igraph                 1.5.0     2023-06-16 [1] CRAN (R 4.1.3)
##  impute                 1.68.0    2021-10-26 [2] Bioconductor
##  insight                0.19.3    2023-06-29 [2] CRAN (R 4.1.3)
##  IRanges              * 2.28.0    2021-10-26 [2] Bioconductor
##  irlba                  2.3.5.1   2022-10-03 [2] CRAN (R 4.1.2)
##  iterators              1.0.14    2022-02-05 [2] CRAN (R 4.1.2)
##  jpeg                   0.1-10    2022-11-29 [2] CRAN (R 4.1.2)
##  jquerylib              0.1.4     2021-04-26 [2] CRAN (R 4.1.0)
##  jsonlite               1.8.7     2023-06-29 [2] CRAN (R 4.1.3)
##  kableExtra             1.3.4     2021-02-20 [2] CRAN (R 4.1.2)
##  KEGGREST               1.34.0    2021-10-26 [2] Bioconductor
##  KernSmooth             2.23-22   2023-07-10 [2] CRAN (R 4.1.3)
##  knitr                  1.43      2023-05-25 [2] CRAN (R 4.1.3)
##  labeling               0.4.2     2020-10-20 [2] CRAN (R 4.1.0)
##  lambda.r               1.2.4     2019-09-18 [2] CRAN (R 4.1.0)
##  later                  1.3.1     2023-05-02 [2] CRAN (R 4.1.2)
##  lattice              * 0.21-8    2023-04-05 [2] CRAN (R 4.1.2)
##  lavaan                 0.6-15    2023-03-14 [2] CRAN (R 4.1.2)
##  leaps                  3.1       2020-01-16 [2] CRAN (R 4.1.0)
##  libcoin                1.0-9     2021-09-27 [2] CRAN (R 4.1.0)
##  lifecycle              1.0.3     2022-10-07 [2] CRAN (R 4.1.2)
##  limma                  3.50.3    2022-04-07 [2] Bioconductor
##  locfit                 1.5-9.8   2023-06-11 [2] CRAN (R 4.1.3)
##  LOCOM                  1.1       2022-08-05 [2] Github (yijuanhu/LOCOM@c181e0f)
##  lubridate              1.9.2     2023-02-10 [2] CRAN (R 4.1.2)
##  magrittr             * 2.0.3     2022-03-30 [2] CRAN (R 4.1.2)
##  MASS                   7.3-60    2023-05-04 [2] CRAN (R 4.1.2)
##  Matrix                 1.6-0     2023-07-08 [2] CRAN (R 4.1.3)
##  MatrixGenerics       * 1.6.0     2021-10-26 [2] Bioconductor
##  matrixStats          * 1.0.0     2023-06-02 [2] CRAN (R 4.1.3)
##  mbzinb                 0.2       2022-03-16 [2] local
##  memoise                2.0.1     2021-11-26 [2] CRAN (R 4.1.0)
##  metagenomeSeq          1.36.0    2021-10-26 [2] Bioconductor
##  mgcv                   1.8-42    2023-03-02 [2] CRAN (R 4.1.2)
##  microbiome             1.16.0    2021-10-26 [2] Bioconductor
##  mime                   0.12      2021-09-28 [2] CRAN (R 4.1.0)
##  miniUI                 0.1.1.1   2018-05-18 [2] CRAN (R 4.1.0)
##  mixedCCA               1.6.2     2022-09-09 [2] CRAN (R 4.1.2)
##  mnormt                 2.1.1     2022-09-26 [2] CRAN (R 4.1.2)
##  modeltools             0.2-23    2020-03-05 [2] CRAN (R 4.1.0)
##  multcomp               1.4-25    2023-06-20 [2] CRAN (R 4.1.3)
##  multcompView           0.1-9     2023-04-09 [2] CRAN (R 4.1.2)
##  multtest               2.50.0    2021-10-26 [2] Bioconductor
##  munsell                0.5.0     2018-06-12 [2] CRAN (R 4.1.0)
##  mvtnorm                1.2-2     2023-06-08 [2] CRAN (R 4.1.3)
##  mycor                  0.1.1     2018-04-10 [2] CRAN (R 4.1.0)
##  NADA                   1.6-1.1   2020-03-22 [2] CRAN (R 4.1.0)
##  NetCoMi              * 1.0.3     2022-07-14 [2] Github (stefpeschel/NetCoMi@d4d80d3)
##  nlme                 * 3.1-162   2023-01-31 [2] CRAN (R 4.1.2)
##  nnet                   7.3-19    2023-05-03 [2] CRAN (R 4.1.2)
##  openssl                2.0.6     2023-03-09 [2] CRAN (R 4.1.2)
##  pbapply                1.7-2     2023-06-27 [2] CRAN (R 4.1.3)
##  pbivnorm               0.6.0     2015-01-23 [2] CRAN (R 4.1.0)
##  pcaPP                  2.0-3     2022-10-24 [2] CRAN (R 4.1.2)
##  permute              * 0.9-7     2022-01-27 [2] CRAN (R 4.1.2)
##  pheatmap             * 1.0.12    2019-01-04 [2] CRAN (R 4.1.0)
##  phyloseq             * 1.38.0    2021-10-26 [2] Bioconductor
##  picante              * 1.8.2     2020-06-10 [2] CRAN (R 4.1.0)
##  pillar                 1.9.0     2023-03-22 [2] CRAN (R 4.1.2)
##  pkgbuild               1.4.2     2023-06-26 [2] CRAN (R 4.1.3)
##  pkgconfig              2.0.3     2019-09-22 [2] CRAN (R 4.1.0)
##  pkgload                1.3.2.1   2023-07-08 [2] CRAN (R 4.1.3)
##  plyr                   1.8.8     2022-11-11 [2] CRAN (R 4.1.2)
##  png                    0.1-8     2022-11-29 [2] CRAN (R 4.1.2)
##  ppcor                  1.1       2015-12-03 [2] CRAN (R 4.1.0)
##  preprocessCore         1.56.0    2021-10-26 [2] Bioconductor
##  prettyunits            1.1.1     2020-01-24 [2] CRAN (R 4.1.0)
##  processx               3.8.2     2023-06-30 [2] CRAN (R 4.1.3)
##  profvis                0.3.8     2023-05-02 [2] CRAN (R 4.1.2)
##  promises               1.2.0.1   2021-02-11 [2] CRAN (R 4.1.0)
##  protoclust             1.6.4     2022-04-01 [2] CRAN (R 4.1.2)
##  proxy                  0.4-27    2022-06-09 [2] CRAN (R 4.1.2)
##  ps                     1.7.5     2023-04-18 [2] CRAN (R 4.1.2)
##  pscl                   1.5.5.1   2023-05-10 [2] CRAN (R 4.1.2)
##  psych                  2.3.6     2023-06-21 [2] CRAN (R 4.1.3)
##  pulsar                 0.3.10    2023-01-26 [2] CRAN (R 4.1.2)
##  purrr                * 1.0.1     2023-01-10 [2] CRAN (R 4.1.2)
##  qgraph                 1.9.5     2023-05-16 [2] CRAN (R 4.1.3)
##  quadprog               1.5-8     2019-11-20 [2] CRAN (R 4.1.0)
##  qvalue                 2.26.0    2021-10-26 [2] Bioconductor
##  R6                     2.5.1     2021-08-19 [2] CRAN (R 4.1.0)
##  RAIDA                  1.0       2022-03-14 [2] local
##  rbibutils              2.2.13    2023-01-13 [2] CRAN (R 4.1.2)
##  RColorBrewer         * 1.1-3     2022-04-03 [2] CRAN (R 4.1.2)
##  Rcpp                 * 1.0.11    2023-07-06 [1] CRAN (R 4.1.3)
##  RcppZiggurat           0.1.6     2020-10-20 [2] CRAN (R 4.1.0)
##  RCurl                  1.98-1.12 2023-03-27 [2] CRAN (R 4.1.2)
##  Rdpack                 2.4       2022-07-20 [2] CRAN (R 4.1.2)
##  readr                * 2.1.4     2023-02-10 [2] CRAN (R 4.1.2)
##  readxl               * 1.4.3     2023-07-06 [2] CRAN (R 4.1.3)
##  remotes                2.4.2     2021-11-30 [2] CRAN (R 4.1.0)
##  reshape2               1.4.4     2020-04-09 [2] CRAN (R 4.1.0)
##  reticulate             1.30      2023-06-09 [2] CRAN (R 4.1.3)
##  Rfast                  2.0.8     2023-07-03 [2] CRAN (R 4.1.3)
##  rhdf5                  2.38.1    2022-03-10 [2] Bioconductor
##  rhdf5filters           1.6.0     2021-10-26 [2] Bioconductor
##  Rhdf5lib               1.16.0    2021-10-26 [2] Bioconductor
##  rlang                  1.1.1     2023-04-28 [1] CRAN (R 4.1.2)
##  rmarkdown              2.23      2023-07-01 [2] CRAN (R 4.1.3)
##  robustbase             0.99-0    2023-06-16 [2] CRAN (R 4.1.3)
##  rootSolve              1.8.2.3   2021-09-29 [2] CRAN (R 4.1.0)
##  rpart                  4.1.19    2022-10-21 [2] CRAN (R 4.1.2)
##  RSpectra               0.16-1    2022-04-24 [2] CRAN (R 4.1.2)
##  RSQLite                2.3.1     2023-04-03 [2] CRAN (R 4.1.2)
##  rstatix                0.7.2     2023-02-01 [2] CRAN (R 4.1.2)
##  rstudioapi             0.15.0    2023-07-07 [2] CRAN (R 4.1.3)
##  Rtsne                  0.16      2022-04-17 [2] CRAN (R 4.1.2)
##  RVenn                  1.1.0     2019-07-18 [2] CRAN (R 4.1.0)
##  rvest                  1.0.3     2022-08-19 [2] CRAN (R 4.1.2)
##  S4Vectors            * 0.32.4    2022-03-29 [2] Bioconductor
##  sandwich               3.0-2     2022-06-15 [2] CRAN (R 4.1.2)
##  sass                   0.4.6     2023-05-03 [2] CRAN (R 4.1.2)
##  scales                 1.2.1     2022-08-20 [2] CRAN (R 4.1.2)
##  scatterplot3d          0.3-44    2023-05-05 [2] CRAN (R 4.1.2)
##  sessioninfo            1.2.2     2021-12-06 [2] CRAN (R 4.1.0)
##  sf                     1.0-7     2022-03-07 [2] CRAN (R 4.1.2)
##  shape                  1.4.6     2021-05-19 [2] CRAN (R 4.1.0)
##  shiny                  1.7.4.1   2023-07-06 [2] CRAN (R 4.1.3)
##  sjlabelled             1.2.0     2022-04-10 [2] CRAN (R 4.1.2)
##  sjmisc                 2.8.9     2021-12-03 [2] CRAN (R 4.1.0)
##  snow                   0.4-4     2021-10-27 [2] CRAN (R 4.1.0)
##  SpiecEasi            * 1.1.2     2022-07-14 [2] Github (zdk123/SpiecEasi@c463727)
##  SPRING                 1.0.4     2022-08-03 [2] Github (GraceYoon/SPRING@3d641a4)
##  stringi                1.7.12    2023-01-11 [2] CRAN (R 4.1.2)
##  stringr                1.5.0     2022-12-02 [2] CRAN (R 4.1.2)
##  SummarizedExperiment * 1.24.0    2021-10-26 [2] Bioconductor
##  survival               3.5-5     2023-03-12 [2] CRAN (R 4.1.2)
##  svglite                2.1.1     2023-01-10 [2] CRAN (R 4.1.2)
##  systemfonts            1.0.4     2022-02-11 [2] CRAN (R 4.1.2)
##  tensorA                0.36.2    2020-11-19 [2] CRAN (R 4.1.0)
##  TH.data                1.1-2     2023-04-17 [2] CRAN (R 4.1.2)
##  tibble               * 3.2.1     2023-03-20 [2] CRAN (R 4.1.2)
##  tidyr                * 1.3.0     2023-01-24 [2] CRAN (R 4.1.2)
##  tidyselect             1.2.0     2022-10-10 [2] CRAN (R 4.1.2)
##  timechange             0.2.0     2023-01-11 [2] CRAN (R 4.1.2)
##  truncnorm              1.0-9     2023-03-20 [2] CRAN (R 4.1.2)
##  tzdb                   0.4.0     2023-05-12 [2] CRAN (R 4.1.3)
##  umap                   0.2.10.0  2023-02-01 [2] CRAN (R 4.1.2)
##  units                  0.8-2     2023-04-27 [2] CRAN (R 4.1.2)
##  urlchecker             1.0.1     2021-11-30 [2] CRAN (R 4.1.0)
##  usethis              * 2.2.2     2023-07-06 [2] CRAN (R 4.1.3)
##  utf8                   1.2.3     2023-01-31 [2] CRAN (R 4.1.2)
##  uuid                   1.1-0     2022-04-19 [2] CRAN (R 4.1.2)
##  vctrs                  0.6.3     2023-06-14 [1] CRAN (R 4.1.3)
##  vegan                * 2.6-4     2022-10-11 [2] CRAN (R 4.1.2)
##  VennDiagram          * 1.7.3     2022-04-12 [2] CRAN (R 4.1.2)
##  VGAM                   1.1-8     2023-03-09 [2] CRAN (R 4.1.2)
##  viridis              * 0.6.3     2023-05-03 [2] CRAN (R 4.1.2)
##  viridisLite          * 0.4.2     2023-05-02 [2] CRAN (R 4.1.2)
##  vroom                  1.6.3     2023-04-28 [2] CRAN (R 4.1.2)
##  webshot                0.5.5     2023-06-26 [2] CRAN (R 4.1.3)
##  WGCNA                  1.72-1    2023-01-18 [2] CRAN (R 4.1.2)
##  withr                  2.5.0     2022-03-03 [2] CRAN (R 4.1.2)
##  Wrench                 1.12.0    2021-10-26 [2] Bioconductor
##  xfun                   0.40      2023-08-09 [1] CRAN (R 4.1.3)
##  XMAS2                * 2.2.0     2023-10-27 [1] local
##  XML                    3.99-0.14 2023-03-19 [2] CRAN (R 4.1.2)
##  xml2                   1.3.5     2023-07-06 [2] CRAN (R 4.1.3)
##  xtable                 1.8-4     2019-04-21 [2] CRAN (R 4.1.0)
##  XVector                0.34.0    2021-10-26 [2] Bioconductor
##  yaml                   2.3.7     2023-01-23 [2] CRAN (R 4.1.2)
##  zCompositions          1.4.0-1   2022-03-26 [2] CRAN (R 4.1.2)
##  zlibbioc               1.40.0    2021-10-26 [2] Bioconductor
##  zoo                    1.8-12    2023-04-13 [2] CRAN (R 4.1.2)
## 
##  [1] /Users/zouhua/Library/R/x86_64/4.1/library
##  [2] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────