Chapter 8 Differential Analysis

Loading packages

library(XMAS2)
library(dplyr)
library(tibble)
library(phyloseq)
library(ggplot2)
library(ggpubr)

There are more than 10 approaches to perform differential analysis. Here, we choose two of them and recommend users going to Chapter 10 to see more details.

8.1 Filtering & Trimming

We suggest that filtering taxa with low abundance (the summarized value under cutoff: 1e-4) and trimming taxa with low prevalence (default: 0.1).

8.1.1 Filtering the low relative abundance or unclassified taxa by the threshold (total counts < 1e-4)

  • filter by sum relative abundance
metaphlan2_ps_species_filter <- run_filter(ps = metaphlan2_ps_LOD_species_remove_BRS, 
                                           cutoff = 1e-4, 
                                           unclass = TRUE)
metaphlan2_ps_species_filter 
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 144 taxa and 22 samples ]
## sample_data() Sample Data:       [ 22 samples by 2 sample variables ]
## tax_table()   Taxonomy Table:    [ 144 taxa by 7 taxonomic ranks ]

Species from taxonomic profiles were retained for further analysis if their mean relative abundance exceeded 0.005 (0.5%) across the dataset with a minimum abundance of 0.05 (5%) in at least one sample and non-zero abundance in at least 60% of samples.

  1. Mean relative abundance: 0.005;

  2. Minimum relative abundance: 0.05;

Here, we use 0.01 (the 1e-4 regarded as 0.01 compared to the Referece because Metaphlan2 data had been divided 100).

metaphlan2_ps_species_filter2 <- run_filter2(ps = metaphlan2_ps_LOD_species_remove_BRS, 
                                             cutoff_mean = 1e-04, 
                                             cutoff_one = 1e-03, 
                                             unclass = TRUE)
metaphlan2_ps_species_filter2
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 144 taxa and 22 samples ]
## sample_data() Sample Data:       [ 22 samples by 2 sample variables ]
## tax_table()   Taxonomy Table:    [ 144 taxa by 7 taxonomic ranks ]

8.1.2 Trimming the taxa with low occurrence less than threshold

metaphlan2_ps_species_filter_trim <- run_trim(object = metaphlan2_ps_species_filter, 
                                              cutoff = 0.1, 
                                              trim = "feature")
metaphlan2_ps_species_filter_trim
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 132 taxa and 22 samples ]
## sample_data() Sample Data:       [ 22 samples by 2 sample variables ]
## tax_table()   Taxonomy Table:    [ 132 taxa by 7 taxonomic ranks ]

8.2 Liner discriminant analysis (LDA) effect size (LEfSe)

  • Calculation
# metaphlan2_ps_lefse <- run_lefse(
#                           ps = metaphlan2_ps_species_filter_trim,
#                           group = "Group",
#                           group_names = c("AA", "BB"),
#                           norm = "CPM",
#                           Lda = 2)

metaphlan2_ps_lefse <- run_lefse2(
                          ps = metaphlan2_ps_species_filter_trim,
                          group = "Group",
                          group_names = c("AA", "BB"),
                          norm = "CPM",
                          lda_cutoff = 2)
head(metaphlan2_ps_lefse)
##                            TaxaID         Block LDA_Score Enrichment EffectSize     Pvalue Log2FoldChange (Median)\nAA_vs_BB
## 1  s__Adlercreutzia_equolifaciens 7_AA vs 15_BB  3.160778         BB   1.577193 0.03675238                                NA
## 2 s__Bacteroides_thetaiotaomicron 7_AA vs 15_BB -4.688237         AA   4.204038 0.00531109                          5.419566
## 3 s__Bifidobacterium_adolescentis 7_AA vs 15_BB  4.755989         BB   3.883638 0.01273201                                NA
## 4       s__Bifidobacterium_longum 7_AA vs 15_BB  4.764078         BB   2.466823 0.02596373                         -4.652794
## 5    s__Clostridium_asparagiforme 7_AA vs 15_BB -2.999903         AA   1.604847 0.03886151                                NA
## 6      s__Collinsella_aerofaciens 7_AA vs 15_BB  4.214636         BB   3.122592 0.03312054                                NA
##   Median Abundance\n(All) Median Abundance\nAA Median Abundance\nBB Log2FoldChange (Mean)\nAA_vs_BB Mean Abundance\n(All) Mean Abundance\nAA
## 1                   0.000               0.0000                0.000                              NA              908.0076              0.000
## 2                2879.516           46627.3399             1089.403                        3.196193            24165.2943          61556.260
## 3                   0.000               0.0000             3849.789                              NA            36307.7414              0.000
## 4               11054.184            1204.0647            30288.685                       -3.714249            41325.0829           4459.348
## 5                   0.000             267.2502                0.000                        4.254960              502.7677           1420.679
## 6                7749.743               0.0000            13231.406                       -3.238523            12772.4540           1891.272
##   Mean Abundance\nBB Occurrence (100%)\n(All) Occurrence (100%)\nAA Occurrence (100%)\nBB Odds Ratio (95% CI)
## 1           1331.745                    31.82                  0.00                 46.67                <NA>
## 2           6716.177                    86.36                100.00                 80.00    0.062 (-5.4;5.5)
## 3          53251.354                    40.91                  0.00                 60.00                <NA>
## 4          58529.092                    81.82                 71.43                 86.67       260 (270;250)
## 5             74.409                    27.27                 57.14                 13.33   0.0067 (-9.8;9.8)
## 6          17850.339                    63.64                 42.86                 73.33          30 (37;23)
  • Visualization
# # don't run this code when you do lefse in reality
# metaphlan2_ps_lefse$LDA_Score <- metaphlan2_ps_lefse$LDA_Score * 1000
plot_lefse(
    da_res = metaphlan2_ps_lefse,
    x_index = "LDA_Score",
    x_index_cutoff = 1,
    group_color = c("green", "red"))
Lefse analysis

Figure 8.1: Lefse analysis

8.3 Wilcoxon Rank-Sum test

  • Calculation
metaphlan2_ps_wilcox <- run_wilcox(
                          ps = metaphlan2_ps_species_filter_trim,
                          group = "Group",
                          group_names = c("AA", "BB"))

head(metaphlan2_ps_wilcox)
##                           TaxaID         Block Enrichment EffectSize Statistic     Pvalue AdjustedPvalue Log2FoldChange (Median)\nAA_vs_BB
## 1  s__Acidaminococcus_fermentans 7_AA vs 15_BB  Nonsignif  0.1545096      49.0 0.75333110      0.9039973                                NA
## 2   s__Acidaminococcus_intestini 7_AA vs 15_BB  Nonsignif  0.1177459      54.0 0.90599343      0.9722856                                NA
## 3 s__Adlercreutzia_equolifaciens 7_AA vs 15_BB  Nonsignif  1.6614672      28.0 0.04076802      0.3520563                                NA
## 4        s__Alistipes_finegoldii 7_AA vs 15_BB  Nonsignif  0.2935476      75.0 0.08188173      0.4793154                                NA
## 5      s__Alistipes_indistinctus 7_AA vs 15_BB  Nonsignif  0.3308118      68.0 0.17792767      0.4793154                                NA
## 6       s__Alistipes_onderdonkii 7_AA vs 15_BB  Nonsignif  0.3147638      66.5 0.29869756      0.5730690                                NA
##   Median Abundance\n(All) Median Abundance\nAA Median Abundance\nBB Log2FoldChange (Rank)\nAA_vs_BB Mean Rank Abundance\nAA
## 1                       0            0.0000000                    0                     -0.09269949                   11.00
## 2                       0            0.0000000                    0                      0.03870725                   11.71
## 3                       0            0.0000000                    0                     -0.71479501                    8.00
## 4                       0            0.0027362                    0                      0.55679725                   14.71
## 5                       0            0.0000000                    0                      0.38896713                   13.71
## 6                       0            0.0002823                    0                      0.35298403                   13.50
##   Mean Rank Abundance\nBB Occurrence (100%)\n(All) Occurrence (100%)\nAA Occurrence (100%)\nBB Odds Ratio (95% CI)
## 1                   11.73                    18.18                 14.29                 20.00      1.5 (2.4;0.69)
## 2                   11.40                    13.64                 14.29                 13.33    0.62 (-0.32;1.6)
## 3                   13.13                    31.82                  0.00                 46.67                <NA>
## 4                   10.00                    40.91                 57.14                 33.33     0.0025 (-12;12)
## 5                   10.47                    27.27                 42.86                 20.00   0.0085 (-9.3;9.4)
## 6                   10.57                    45.45                 57.14                 40.00     0.37 (-1.6;2.3)
  • Volcano
plot_volcano(
    da_res = metaphlan2_ps_wilcox,
    group_names = c("AA", "BB"),
    x_index = "Log2FoldChange (Rank)\nAA_vs_BB",
    x_index_cutoff = 0.5,
    y_index = "Pvalue",
    y_index_cutoff = 0.05,
    group_color = c("red", "grey", "blue"),
    topN = 4,
    taxa_name = "s__Megamonas_rupellensis")
Wilcoxon Rank-Sum test

Figure 8.2: Wilcoxon Rank-Sum test

8.4 Dominant taxa

Display the significant taxa with selection using boxplot.

plot_topN_boxplot(
    ps = metaphlan2_ps_species_filter_trim,
    da_res = metaphlan2_ps_wilcox,
    x_index = "Log2FoldChange (Rank)\nAA_vs_BB",
    x_index_cutoff = 0.5,
    y_index = "Pvalue",
    y_index_cutoff = 0.05,
    topN = 4,
    group = "Group")
Dominant Taxa

Figure 8.3: Dominant Taxa

8.5 Multiple differential analysis by one function

Here, we provide the run_multiple_da for obtaining the results list from multiple differential analysis methods.

multiple_res <- run_multiple_da(
                   ps = metaphlan2_ps_species_filter_trim,
                   group = "Group",
                   group_names = c("AA", "BB"),
                   da_method = c("wilcox", "limma_voom", "ttest"))

names(multiple_res)
## [1] "wilcox"     "limma_voom" "ttest"
  • plot results
plot_multiple_DA(
      Multip_DA_res = multiple_res,
      x_index_list = c("Log2FoldChange (Rank)\nAA_vs_BB", 
                       "logFC", 
                       "Log2FoldChange (Mean)\nAA_vs_BB"),
      x_index_cutoff = 0,  
      y_index = "Pvalue",
      y_index_cutoff = 0.05,
      cellwidth = 35,
      cellheight = 10,
      fontsize_number = 15)

8.6 Systematic Information

devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.1.3 (2022-03-10)
##  os       macOS Monterey 12.2.1
##  system   x86_64, darwin17.0
##  ui       RStudio
##  language (EN)
##  collate  en_US.UTF-8
##  ctype    en_US.UTF-8
##  tz       Asia/Shanghai
##  date     2023-10-27
##  rstudio  2023.09.0+463 Desert Sunflower (desktop)
##  pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  package              * version   date (UTC) lib source
##  abind                  1.4-5     2016-07-21 [2] CRAN (R 4.1.0)
##  ade4                   1.7-22    2023-02-06 [2] CRAN (R 4.1.2)
##  ALDEx2                 1.30.0    2022-11-01 [2] Bioconductor
##  annotate               1.72.0    2021-10-26 [2] Bioconductor
##  AnnotationDbi          1.60.2    2023-03-10 [2] Bioconductor
##  ape                  * 5.7-1     2023-03-13 [2] CRAN (R 4.1.2)
##  askpass                1.1       2019-01-13 [2] CRAN (R 4.1.0)
##  backports              1.4.1     2021-12-13 [2] CRAN (R 4.1.0)
##  base64enc              0.1-3     2015-07-28 [2] CRAN (R 4.1.0)
##  bayesm                 3.1-5     2022-12-02 [2] CRAN (R 4.1.2)
##  Biobase              * 2.54.0    2021-10-26 [2] Bioconductor
##  BiocGenerics         * 0.40.0    2021-10-26 [2] Bioconductor
##  BiocParallel           1.28.3    2021-12-09 [2] Bioconductor
##  biomformat             1.22.0    2021-10-26 [2] Bioconductor
##  Biostrings             2.62.0    2021-10-26 [2] Bioconductor
##  bit                    4.0.5     2022-11-15 [2] CRAN (R 4.1.2)
##  bit64                  4.0.5     2020-08-30 [2] CRAN (R 4.1.0)
##  bitops                 1.0-7     2021-04-24 [2] CRAN (R 4.1.0)
##  blob                   1.2.4     2023-03-17 [2] CRAN (R 4.1.2)
##  bookdown               0.34      2023-05-09 [2] CRAN (R 4.1.2)
##  broom                  1.0.5     2023-06-09 [2] CRAN (R 4.1.3)
##  bslib                  0.5.0     2023-06-09 [2] CRAN (R 4.1.3)
##  cachem                 1.0.8     2023-05-01 [2] CRAN (R 4.1.2)
##  callr                  3.7.3     2022-11-02 [2] CRAN (R 4.1.2)
##  car                    3.1-2     2023-03-30 [2] CRAN (R 4.1.2)
##  carData                3.0-5     2022-01-06 [2] CRAN (R 4.1.2)
##  caTools                1.18.2    2021-03-28 [2] CRAN (R 4.1.0)
##  cccd                   1.6       2022-04-08 [2] CRAN (R 4.1.2)
##  cellranger             1.1.0     2016-07-27 [2] CRAN (R 4.1.0)
##  checkmate              2.2.0     2023-04-27 [2] CRAN (R 4.1.2)
##  class                  7.3-22    2023-05-03 [2] CRAN (R 4.1.2)
##  classInt               0.4-9     2023-02-28 [2] CRAN (R 4.1.2)
##  cli                    3.6.1     2023-03-23 [2] CRAN (R 4.1.2)
##  cluster                2.1.4     2022-08-22 [2] CRAN (R 4.1.2)
##  coda                   0.19-4    2020-09-30 [2] CRAN (R 4.1.0)
##  codetools              0.2-19    2023-02-01 [2] CRAN (R 4.1.2)
##  coin                   1.4-2     2021-10-08 [2] CRAN (R 4.1.0)
##  colorspace             2.1-0     2023-01-23 [2] CRAN (R 4.1.2)
##  compositions           2.0-6     2023-04-13 [2] CRAN (R 4.1.2)
##  conflicted           * 1.2.0     2023-02-01 [2] CRAN (R 4.1.2)
##  corpcor                1.6.10    2021-09-16 [2] CRAN (R 4.1.0)
##  corrplot               0.92      2021-11-18 [2] CRAN (R 4.1.0)
##  cowplot                1.1.1     2020-12-30 [2] CRAN (R 4.1.0)
##  crayon                 1.5.2     2022-09-29 [2] CRAN (R 4.1.2)
##  crosstalk              1.2.0     2021-11-04 [2] CRAN (R 4.1.0)
##  data.table             1.14.8    2023-02-17 [2] CRAN (R 4.1.2)
##  DBI                    1.1.3     2022-06-18 [2] CRAN (R 4.1.2)
##  DelayedArray           0.20.0    2021-10-26 [2] Bioconductor
##  deldir                 1.0-9     2023-05-17 [2] CRAN (R 4.1.3)
##  DEoptimR               1.0-14    2023-06-09 [2] CRAN (R 4.1.3)
##  DESeq2                 1.34.0    2021-10-26 [2] Bioconductor
##  devtools             * 2.4.5     2022-10-11 [2] CRAN (R 4.1.2)
##  digest                 0.6.33    2023-07-07 [1] CRAN (R 4.1.3)
##  doParallel             1.0.17    2022-02-07 [2] CRAN (R 4.1.2)
##  doSNOW                 1.0.20    2022-02-04 [2] CRAN (R 4.1.2)
##  dplyr                * 1.1.2     2023-04-20 [2] CRAN (R 4.1.2)
##  DT                     0.28      2023-05-18 [2] CRAN (R 4.1.3)
##  dynamicTreeCut         1.63-1    2016-03-11 [2] CRAN (R 4.1.0)
##  e1071                  1.7-13    2023-02-01 [2] CRAN (R 4.1.2)
##  edgeR                  3.36.0    2021-10-26 [2] Bioconductor
##  ellipsis               0.3.2     2021-04-29 [2] CRAN (R 4.1.0)
##  emmeans                1.8.7     2023-06-23 [1] CRAN (R 4.1.3)
##  estimability           1.4.1     2022-08-05 [2] CRAN (R 4.1.2)
##  evaluate               0.21      2023-05-05 [2] CRAN (R 4.1.2)
##  FactoMineR             2.8       2023-03-27 [2] CRAN (R 4.1.2)
##  fansi                  1.0.4     2023-01-22 [2] CRAN (R 4.1.2)
##  farver                 2.1.1     2022-07-06 [2] CRAN (R 4.1.2)
##  fastcluster            1.2.3     2021-05-24 [2] CRAN (R 4.1.0)
##  fastmap                1.1.1     2023-02-24 [2] CRAN (R 4.1.2)
##  fdrtool                1.2.17    2021-11-13 [2] CRAN (R 4.1.0)
##  filematrix             1.3       2018-02-27 [2] CRAN (R 4.1.0)
##  flashClust             1.01-2    2012-08-21 [2] CRAN (R 4.1.0)
##  FNN                    1.1.3.2   2023-03-20 [2] CRAN (R 4.1.2)
##  foreach                1.5.2     2022-02-02 [2] CRAN (R 4.1.2)
##  foreign                0.8-84    2022-12-06 [2] CRAN (R 4.1.2)
##  forestplot             3.1.1     2022-12-06 [2] CRAN (R 4.1.2)
##  formatR                1.14      2023-01-17 [2] CRAN (R 4.1.2)
##  Formula                1.2-5     2023-02-24 [2] CRAN (R 4.1.2)
##  fs                     1.6.2     2023-04-25 [2] CRAN (R 4.1.2)
##  futile.logger        * 1.4.3     2016-07-10 [2] CRAN (R 4.1.0)
##  futile.options         1.0.1     2018-04-20 [2] CRAN (R 4.1.0)
##  genefilter             1.76.0    2021-10-26 [2] Bioconductor
##  geneplotter            1.72.0    2021-10-26 [2] Bioconductor
##  generics               0.1.3     2022-07-05 [2] CRAN (R 4.1.2)
##  GenomeInfoDb         * 1.30.1    2022-01-30 [2] Bioconductor
##  GenomeInfoDbData       1.2.7     2022-03-09 [2] Bioconductor
##  GenomicRanges        * 1.46.1    2021-11-18 [2] Bioconductor
##  ggiraph                0.8.7     2023-03-17 [2] CRAN (R 4.1.2)
##  ggiraphExtra           0.3.0     2020-10-06 [2] CRAN (R 4.1.2)
##  ggplot2              * 3.4.2     2023-04-03 [2] CRAN (R 4.1.2)
##  ggpubr               * 0.6.0     2023-02-10 [2] CRAN (R 4.1.2)
##  ggrepel                0.9.3     2023-02-03 [2] CRAN (R 4.1.2)
##  ggsci                  3.0.0     2023-03-08 [2] CRAN (R 4.1.2)
##  ggsignif               0.6.4     2022-10-13 [2] CRAN (R 4.1.2)
##  ggVennDiagram          1.2.2     2022-09-08 [2] CRAN (R 4.1.2)
##  glasso                 1.11      2019-10-01 [2] CRAN (R 4.1.0)
##  glmnet                 4.1-7     2023-03-23 [2] CRAN (R 4.1.2)
##  glue                 * 1.6.2     2022-02-24 [2] CRAN (R 4.1.2)
##  Gmisc                * 3.0.2     2023-03-13 [2] CRAN (R 4.1.2)
##  GO.db                  3.14.0    2022-04-11 [2] Bioconductor
##  gplots                 3.1.3     2022-04-25 [2] CRAN (R 4.1.2)
##  gridExtra              2.3       2017-09-09 [2] CRAN (R 4.1.0)
##  gtable                 0.3.3     2023-03-21 [2] CRAN (R 4.1.2)
##  gtools                 3.9.4     2022-11-27 [2] CRAN (R 4.1.2)
##  highr                  0.10      2022-12-22 [2] CRAN (R 4.1.2)
##  Hmisc                  5.1-0     2023-05-08 [2] CRAN (R 4.1.2)
##  hms                    1.1.3     2023-03-21 [2] CRAN (R 4.1.2)
##  htmlTable            * 2.4.1     2022-07-07 [2] CRAN (R 4.1.2)
##  htmltools              0.5.5     2023-03-23 [2] CRAN (R 4.1.2)
##  htmlwidgets            1.6.2     2023-03-17 [2] CRAN (R 4.1.2)
##  httpuv                 1.6.11    2023-05-11 [2] CRAN (R 4.1.3)
##  httr                   1.4.6     2023-05-08 [2] CRAN (R 4.1.2)
##  huge                   1.3.5     2021-06-30 [2] CRAN (R 4.1.0)
##  igraph                 1.5.0     2023-06-16 [1] CRAN (R 4.1.3)
##  impute                 1.68.0    2021-10-26 [2] Bioconductor
##  insight                0.19.3    2023-06-29 [2] CRAN (R 4.1.3)
##  IRanges              * 2.28.0    2021-10-26 [2] Bioconductor
##  irlba                  2.3.5.1   2022-10-03 [2] CRAN (R 4.1.2)
##  iterators              1.0.14    2022-02-05 [2] CRAN (R 4.1.2)
##  jpeg                   0.1-10    2022-11-29 [2] CRAN (R 4.1.2)
##  jquerylib              0.1.4     2021-04-26 [2] CRAN (R 4.1.0)
##  jsonlite               1.8.7     2023-06-29 [2] CRAN (R 4.1.3)
##  kableExtra             1.3.4     2021-02-20 [2] CRAN (R 4.1.2)
##  KEGGREST               1.34.0    2021-10-26 [2] Bioconductor
##  KernSmooth             2.23-22   2023-07-10 [2] CRAN (R 4.1.3)
##  knitr                  1.43      2023-05-25 [2] CRAN (R 4.1.3)
##  labeling               0.4.2     2020-10-20 [2] CRAN (R 4.1.0)
##  lambda.r               1.2.4     2019-09-18 [2] CRAN (R 4.1.0)
##  later                  1.3.1     2023-05-02 [2] CRAN (R 4.1.2)
##  lattice              * 0.21-8    2023-04-05 [2] CRAN (R 4.1.2)
##  lavaan                 0.6-15    2023-03-14 [2] CRAN (R 4.1.2)
##  leaps                  3.1       2020-01-16 [2] CRAN (R 4.1.0)
##  libcoin                1.0-9     2021-09-27 [2] CRAN (R 4.1.0)
##  lifecycle              1.0.3     2022-10-07 [2] CRAN (R 4.1.2)
##  limma                  3.50.3    2022-04-07 [2] Bioconductor
##  locfit                 1.5-9.8   2023-06-11 [2] CRAN (R 4.1.3)
##  LOCOM                  1.1       2022-08-05 [2] Github (yijuanhu/LOCOM@c181e0f)
##  lubridate              1.9.2     2023-02-10 [2] CRAN (R 4.1.2)
##  magrittr             * 2.0.3     2022-03-30 [2] CRAN (R 4.1.2)
##  MASS                   7.3-60    2023-05-04 [2] CRAN (R 4.1.2)
##  Matrix                 1.6-0     2023-07-08 [2] CRAN (R 4.1.3)
##  MatrixGenerics       * 1.6.0     2021-10-26 [2] Bioconductor
##  matrixStats          * 1.0.0     2023-06-02 [2] CRAN (R 4.1.3)
##  mbzinb                 0.2       2022-03-16 [2] local
##  memoise                2.0.1     2021-11-26 [2] CRAN (R 4.1.0)
##  metagenomeSeq          1.36.0    2021-10-26 [2] Bioconductor
##  mgcv                   1.8-42    2023-03-02 [2] CRAN (R 4.1.2)
##  microbiome             1.16.0    2021-10-26 [2] Bioconductor
##  mime                   0.12      2021-09-28 [2] CRAN (R 4.1.0)
##  miniUI                 0.1.1.1   2018-05-18 [2] CRAN (R 4.1.0)
##  mixedCCA               1.6.2     2022-09-09 [2] CRAN (R 4.1.2)
##  mnormt                 2.1.1     2022-09-26 [2] CRAN (R 4.1.2)
##  modeltools             0.2-23    2020-03-05 [2] CRAN (R 4.1.0)
##  multcomp               1.4-25    2023-06-20 [2] CRAN (R 4.1.3)
##  multcompView           0.1-9     2023-04-09 [2] CRAN (R 4.1.2)
##  multtest               2.50.0    2021-10-26 [2] Bioconductor
##  munsell                0.5.0     2018-06-12 [2] CRAN (R 4.1.0)
##  mvtnorm                1.2-2     2023-06-08 [2] CRAN (R 4.1.3)
##  mycor                  0.1.1     2018-04-10 [2] CRAN (R 4.1.0)
##  NADA                   1.6-1.1   2020-03-22 [2] CRAN (R 4.1.0)
##  NetCoMi              * 1.0.3     2022-07-14 [2] Github (stefpeschel/NetCoMi@d4d80d3)
##  nlme                 * 3.1-162   2023-01-31 [2] CRAN (R 4.1.2)
##  nnet                   7.3-19    2023-05-03 [2] CRAN (R 4.1.2)
##  openssl                2.0.6     2023-03-09 [2] CRAN (R 4.1.2)
##  pbapply                1.7-2     2023-06-27 [2] CRAN (R 4.1.3)
##  pbivnorm               0.6.0     2015-01-23 [2] CRAN (R 4.1.0)
##  pcaPP                  2.0-3     2022-10-24 [2] CRAN (R 4.1.2)
##  permute              * 0.9-7     2022-01-27 [2] CRAN (R 4.1.2)
##  pheatmap             * 1.0.12    2019-01-04 [2] CRAN (R 4.1.0)
##  phyloseq             * 1.38.0    2021-10-26 [2] Bioconductor
##  picante              * 1.8.2     2020-06-10 [2] CRAN (R 4.1.0)
##  pillar                 1.9.0     2023-03-22 [2] CRAN (R 4.1.2)
##  pkgbuild               1.4.2     2023-06-26 [2] CRAN (R 4.1.3)
##  pkgconfig              2.0.3     2019-09-22 [2] CRAN (R 4.1.0)
##  pkgload                1.3.2.1   2023-07-08 [2] CRAN (R 4.1.3)
##  plyr                   1.8.8     2022-11-11 [2] CRAN (R 4.1.2)
##  png                    0.1-8     2022-11-29 [2] CRAN (R 4.1.2)
##  ppcor                  1.1       2015-12-03 [2] CRAN (R 4.1.0)
##  preprocessCore         1.56.0    2021-10-26 [2] Bioconductor
##  prettyunits            1.1.1     2020-01-24 [2] CRAN (R 4.1.0)
##  processx               3.8.2     2023-06-30 [2] CRAN (R 4.1.3)
##  profvis                0.3.8     2023-05-02 [2] CRAN (R 4.1.2)
##  promises               1.2.0.1   2021-02-11 [2] CRAN (R 4.1.0)
##  protoclust             1.6.4     2022-04-01 [2] CRAN (R 4.1.2)
##  proxy                  0.4-27    2022-06-09 [2] CRAN (R 4.1.2)
##  ps                     1.7.5     2023-04-18 [2] CRAN (R 4.1.2)
##  pscl                   1.5.5.1   2023-05-10 [2] CRAN (R 4.1.2)
##  psych                  2.3.6     2023-06-21 [2] CRAN (R 4.1.3)
##  pulsar                 0.3.10    2023-01-26 [2] CRAN (R 4.1.2)
##  purrr                * 1.0.1     2023-01-10 [2] CRAN (R 4.1.2)
##  qgraph                 1.9.5     2023-05-16 [2] CRAN (R 4.1.3)
##  quadprog               1.5-8     2019-11-20 [2] CRAN (R 4.1.0)
##  qvalue                 2.26.0    2021-10-26 [2] Bioconductor
##  R6                     2.5.1     2021-08-19 [2] CRAN (R 4.1.0)
##  RAIDA                  1.0       2022-03-14 [2] local
##  rbibutils              2.2.13    2023-01-13 [2] CRAN (R 4.1.2)
##  RColorBrewer         * 1.1-3     2022-04-03 [2] CRAN (R 4.1.2)
##  Rcpp                 * 1.0.11    2023-07-06 [1] CRAN (R 4.1.3)
##  RcppZiggurat           0.1.6     2020-10-20 [2] CRAN (R 4.1.0)
##  RCurl                  1.98-1.12 2023-03-27 [2] CRAN (R 4.1.2)
##  Rdpack                 2.4       2022-07-20 [2] CRAN (R 4.1.2)
##  readr                * 2.1.4     2023-02-10 [2] CRAN (R 4.1.2)
##  readxl               * 1.4.3     2023-07-06 [2] CRAN (R 4.1.3)
##  remotes                2.4.2     2021-11-30 [2] CRAN (R 4.1.0)
##  reshape2               1.4.4     2020-04-09 [2] CRAN (R 4.1.0)
##  reticulate             1.30      2023-06-09 [2] CRAN (R 4.1.3)
##  Rfast                  2.0.8     2023-07-03 [2] CRAN (R 4.1.3)
##  rhdf5                  2.38.1    2022-03-10 [2] Bioconductor
##  rhdf5filters           1.6.0     2021-10-26 [2] Bioconductor
##  Rhdf5lib               1.16.0    2021-10-26 [2] Bioconductor
##  rlang                  1.1.1     2023-04-28 [1] CRAN (R 4.1.2)
##  rmarkdown              2.23      2023-07-01 [2] CRAN (R 4.1.3)
##  robustbase             0.99-0    2023-06-16 [2] CRAN (R 4.1.3)
##  rootSolve              1.8.2.3   2021-09-29 [2] CRAN (R 4.1.0)
##  rpart                  4.1.19    2022-10-21 [2] CRAN (R 4.1.2)
##  RSpectra               0.16-1    2022-04-24 [2] CRAN (R 4.1.2)
##  RSQLite                2.3.1     2023-04-03 [2] CRAN (R 4.1.2)
##  rstatix                0.7.2     2023-02-01 [2] CRAN (R 4.1.2)
##  rstudioapi             0.15.0    2023-07-07 [2] CRAN (R 4.1.3)
##  Rtsne                  0.16      2022-04-17 [2] CRAN (R 4.1.2)
##  RVenn                  1.1.0     2019-07-18 [2] CRAN (R 4.1.0)
##  rvest                  1.0.3     2022-08-19 [2] CRAN (R 4.1.2)
##  S4Vectors            * 0.32.4    2022-03-29 [2] Bioconductor
##  sandwich               3.0-2     2022-06-15 [2] CRAN (R 4.1.2)
##  sass                   0.4.6     2023-05-03 [2] CRAN (R 4.1.2)
##  scales                 1.2.1     2022-08-20 [2] CRAN (R 4.1.2)
##  scatterplot3d          0.3-44    2023-05-05 [2] CRAN (R 4.1.2)
##  sessioninfo            1.2.2     2021-12-06 [2] CRAN (R 4.1.0)
##  sf                     1.0-7     2022-03-07 [2] CRAN (R 4.1.2)
##  shape                  1.4.6     2021-05-19 [2] CRAN (R 4.1.0)
##  shiny                  1.7.4.1   2023-07-06 [2] CRAN (R 4.1.3)
##  sjlabelled             1.2.0     2022-04-10 [2] CRAN (R 4.1.2)
##  sjmisc                 2.8.9     2021-12-03 [2] CRAN (R 4.1.0)
##  snow                   0.4-4     2021-10-27 [2] CRAN (R 4.1.0)
##  SpiecEasi            * 1.1.2     2022-07-14 [2] Github (zdk123/SpiecEasi@c463727)
##  SPRING                 1.0.4     2022-08-03 [2] Github (GraceYoon/SPRING@3d641a4)
##  stringi                1.7.12    2023-01-11 [2] CRAN (R 4.1.2)
##  stringr                1.5.0     2022-12-02 [2] CRAN (R 4.1.2)
##  SummarizedExperiment * 1.24.0    2021-10-26 [2] Bioconductor
##  survival               3.5-5     2023-03-12 [2] CRAN (R 4.1.2)
##  svglite                2.1.1     2023-01-10 [2] CRAN (R 4.1.2)
##  systemfonts            1.0.4     2022-02-11 [2] CRAN (R 4.1.2)
##  tensorA                0.36.2    2020-11-19 [2] CRAN (R 4.1.0)
##  TH.data                1.1-2     2023-04-17 [2] CRAN (R 4.1.2)
##  tibble               * 3.2.1     2023-03-20 [2] CRAN (R 4.1.2)
##  tidyr                * 1.3.0     2023-01-24 [2] CRAN (R 4.1.2)
##  tidyselect             1.2.0     2022-10-10 [2] CRAN (R 4.1.2)
##  timechange             0.2.0     2023-01-11 [2] CRAN (R 4.1.2)
##  truncnorm              1.0-9     2023-03-20 [2] CRAN (R 4.1.2)
##  tzdb                   0.4.0     2023-05-12 [2] CRAN (R 4.1.3)
##  umap                   0.2.10.0  2023-02-01 [2] CRAN (R 4.1.2)
##  units                  0.8-2     2023-04-27 [2] CRAN (R 4.1.2)
##  urlchecker             1.0.1     2021-11-30 [2] CRAN (R 4.1.0)
##  usethis              * 2.2.2     2023-07-06 [2] CRAN (R 4.1.3)
##  utf8                   1.2.3     2023-01-31 [2] CRAN (R 4.1.2)
##  uuid                   1.1-0     2022-04-19 [2] CRAN (R 4.1.2)
##  vctrs                  0.6.3     2023-06-14 [1] CRAN (R 4.1.3)
##  vegan                * 2.6-4     2022-10-11 [2] CRAN (R 4.1.2)
##  VennDiagram          * 1.7.3     2022-04-12 [2] CRAN (R 4.1.2)
##  VGAM                   1.1-8     2023-03-09 [2] CRAN (R 4.1.2)
##  viridis              * 0.6.3     2023-05-03 [2] CRAN (R 4.1.2)
##  viridisLite          * 0.4.2     2023-05-02 [2] CRAN (R 4.1.2)
##  vroom                  1.6.3     2023-04-28 [2] CRAN (R 4.1.2)
##  webshot                0.5.5     2023-06-26 [2] CRAN (R 4.1.3)
##  WGCNA                  1.72-1    2023-01-18 [2] CRAN (R 4.1.2)
##  withr                  2.5.0     2022-03-03 [2] CRAN (R 4.1.2)
##  Wrench                 1.12.0    2021-10-26 [2] Bioconductor
##  xfun                   0.40      2023-08-09 [1] CRAN (R 4.1.3)
##  XMAS2                * 2.2.0     2023-10-27 [1] local
##  XML                    3.99-0.14 2023-03-19 [2] CRAN (R 4.1.2)
##  xml2                   1.3.5     2023-07-06 [2] CRAN (R 4.1.3)
##  xtable                 1.8-4     2019-04-21 [2] CRAN (R 4.1.0)
##  XVector                0.34.0    2021-10-26 [2] Bioconductor
##  yaml                   2.3.7     2023-01-23 [2] CRAN (R 4.1.2)
##  zCompositions          1.4.0-1   2022-03-26 [2] CRAN (R 4.1.2)
##  zlibbioc               1.40.0    2021-10-26 [2] Bioconductor
##  zoo                    1.8-12    2023-04-13 [2] CRAN (R 4.1.2)
## 
##  [1] /Users/zouhua/Library/R/x86_64/4.1/library
##  [2] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

References

Thingholm, Louise B, Malte C Rühlemann, Manja Koch, Brie Fuqua, Guido Laucke, Ruwen Boehm, Corinna Bang, et al. 2019. “Obese Individuals with and Without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition.” Cell Host & Microbe 26 (2): 252–64.