Chapter 5 MSEA

This is a markdown tutorial for MSEA. To run MSEA, you need to Install MSEA to your default python before running this template. Installation instruction: https://msea.readthedocs.io/en/latest/quickstart.html#installation.

You can run MSEA when you have genus that you’re interested in (e.g., DA genus), write all genus into one txt file, one genus per line and feed the file to MSEA as input.

Flowchart


5.1 Execute MSEA with python script on server

You can run MSEA analysis with MSEA_Run.py on server, one required parameters and two optional parameters need to be provided for the script:

  1. –input (Required), input genus list file for MSEA, one genus per line.
  2. –output (Optional), output csv file of MSEA result. Default testout.csv
  3. –PerturbationTimes (Optional), number of perturbation. Fisher’s excat test has bias on group with large number of samples, MSEA uses random sampling to remove the bias. Larger number of perturbation would cause longer runtime. Default 50.
    For more detail, see citation

/home/tongbangzhuo/Software/miniconda3/bin/python ./MSEA/MSEA_Run.py --input ./MSEA/test_input --output ./MSEA/testout.csv --PerturbationTimes 10

5.2 Environment setup

library(dplyr)
library(magrittr)
library(ggplot2)
library(ggbipart)
library(stringr)
library(tibble)
library(wesanderson)

5.3 Read in MSEA result

MSEA_res = read.csv('/share/projects/SOP/Functional_Analysis/github/Functional_analysis/MSEA/testout.csv', sep = '\t')
head(MSEA_res, n=3)
##     term oddsratio       pvalue       qvalue    zscore combined_score                                                           shared n_shared
## 1    SP7  27.58621 9.571517e-05 0.0003983486 -8.376409       77.51640             ['Pseudomonas', 'Salmonella', 'Azomonas', 'Sodalis']        4
## 2  SOCS3  29.41176 1.234368e-05 0.0001439254 -5.916120       66.86615 ['Salmonella', 'Azomonas', 'Sodalis', 'Pseudomonas', 'Borrelia']        5
## 3 IFNAR1  53.33333 1.010645e-05 0.0001312818 -5.152460       59.26533             ['Pseudomonas', 'Salmonella', 'Borrelia', 'Sodalis']        4

As the table shown above, MSEA result has 8 columns:

  1. term, human gene names.
  2. oddsratio. Odds ratio (Effect size) of the association between human gene and microbial Genus.
  3. pvalue. p value of Fisher’s exact test.
  4. qvalue. q value of Fisher’s exact test. FDR Benjamini-Hochberg correction applied.
  5. zscore. z-score measuring the deviation in expected ranks.
  6. combined_score. \(c = log_{10}(p)*z\).
  7. shared. Genus associated with the human gene.
  8. n_shared. Number of genus associated with the human gene.

5.4 Filter MSEA result

## Filter MSEA result with qvalue
MSEA_res %<>% filter(qvalue < 0.05)


## Draw bipartite with top 10 combined_score human genes

## Define data transforming function
Transform_data <- function(df){
  All_Genus_in_res <- df$shared %>% unlist() %>% str_remove_all('\\[') %>% str_remove_all('\\]') %>% str_remove_all("'") %>% str_split(', ') %>% unlist() %>% unique()
  lst <- list()
  for (i in All_Genus_in_res){
    count_vec <- c()
    for (j in (1:nrow(df))){
      target_string = df[j,'shared']  %>% str_remove_all('\\[') %>% str_remove_all('\\]') %>% str_remove_all("'") %>% str_split(', ') %>% unlist()
      count = sum(i == target_string)
      count_vec <- c(count_vec, count)
    }
    lst[[i]] <- count_vec
  }
  bipartite_tbl <- cbind(df, as.data.frame(lst)) %>% dplyr::select(term, all_of(All_Genus_in_res)) %>% column_to_rownames('term')
  return(bipartite_tbl)
}

## Select top 10 human genes
Top_MSEA_res <- MSEA_res[1:10,]

5.5 Visualization

Draw bipartit graph to show the relation between human genes and microbial Genus with ggnet.

## Generate data for bipartit graph
bipartite_tbl <- Transform_data(Top_MSEA_res)

## Define network layout
mymat <- bipartite_tbl
coordP <- cbind(rep(2, dim(mymat)[1]), seq(1, dim(mymat)[1]) + 
        2)
coordA <- cbind(rep(4, dim(mymat)[2]), seq(1, dim(mymat)[2]) + 
        2)

mylayout <- as.matrix(rbind(coordP, coordA))

## Construct network content
test.net <- bip_init_network(mymat, mode1 = 'HumanGenes',mode2 = 'MicrobialGenus')

# Define groups of network nodes
test.net %v% "Group" = get.vertex.attribute(test.net, attrname="mode")

# Draw network
p <- GGally::ggnet2(test.net, mode = mylayout,
               label = T, size = "degree",
               color = 'Group', shape = 'Group',
               label.size = 5, layout.exp = 1.5, alpha = 0.75) +
  scale_colour_manual(values = wes_palette("FantasticFox1")) + 
  guides(color=guide_legend("Group"))

p


5.6 Run enrichR analysis

After acquiring genus-associated human genes, you can run enrich your genes on different databases by enrichR.
The next chunk shows you how to run enrichR on R studio, you can either run enrichR on their interactive website.

library(enrichR)

## List available types of databases
listEnrichrSites()

## Choose database of Human genes
setEnrichrSite("Enrichr")

## List available database
websiteLive <- TRUE
dbs <- listEnrichrDbs()
if (is.null(dbs)) websiteLive <- FALSE
if (websiteLive) head(dbs)
##   geneCoverage genesPerTerm                      libraryName                                                     link numTerms                                  appyter
## 1        13362          275              Genome_Browser_PWMs http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/      615 ea115789fcbf12797fd692cec6df0ab4dbc79c6a
## 2        27884         1284         TRANSFAC_and_JASPAR_PWMs                 http://jaspar.genereg.net/html/DOWNLOAD/      326 7d42eb43a64a4e3b20d721fc7148f685b53b6b30
## 3         6002           77        Transcription_Factor_PPIs                                                               290 849f222220618e2599d925b6b51868cf1dab3763
## 4        47172         1370                        ChEA_2013           http://amp.pharm.mssm.edu/lib/cheadownload.jsp      353 7ebe772afb55b63b41b79dd8d06ea0fdd9fa2630
## 5        47107          509 Drug_Perturbations_from_GEO_2014                         http://www.ncbi.nlm.nih.gov/geo/      701 ad270a6876534b7cb063e004289dcd4d3164f342
## 6        21493         3713          ENCODE_TF_ChIP-seq_2014             http://genome.ucsc.edu/ENCODE/downloads.html      498 497787ebc418d308045efb63b8586f10c526af51
##   categoryId
## 1          1
## 2          1
## 3          1
## 4          7
## 5          7
## 6          7
## Choose the databases you want to enrich your genes with and Run enrichR of genus-associated human genes on chosen databases
dbs <- c("GO_Molecular_Function_2021","KEGG_2019_Human")
if (websiteLive) {
    enriched <- enrichr(MSEA_res$term %>% as.vector(), dbs)
}
## Uploading data to Enrichr... Done.
##   Querying GO_Molecular_Function_2021... Done.
##   Querying KEGG_2019_Human... Done.
## Parsing results... Done.
## Show first few rows of enrichment result
Kegg_res <- enriched[['KEGG_2019_Human']]
head(Kegg_res)
##                                              Term Overlap      P.value Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score
## 1                              Pathways in cancer 118/530 3.368482e-53     6.029198e-51           0                    0   7.523619       909.0228
## 2          Cytokine-cytokine receptor interaction  90/294 4.368984e-53     6.029198e-51           0                    0  11.275567      1359.4103
## 3                         IL-17 signaling pathway   52/93 2.802254e-47     2.578073e-45           0                    0  31.100813      3333.7296
## 4                                     Hepatitis B  63/163 2.226240e-44     1.536105e-42           0                    0  15.621378      1570.1583
## 5 Kaposi sarcoma-associated herpesvirus infection  66/186 1.153286e-43     6.366139e-42           0                    0  13.676762      1352.2016
## 6                                     Hepatitis C  61/155 1.497013e-43     6.886260e-42           0                    0  16.054226      1583.0701
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Genes
## 1 SPI1;EPO;ARAF;KEAP1;FGF2;CRKL;FGF7;CCND1;CDH1;MYC;AKT2;AKT1;SKP1;MAP2K1;HGF;WNT5A;MITF;PGF;RUNX1;TP53;IFNAR1;NOTCH1;PDGFB;HIF1A;BCL2L11;TERT;ABL1;HMOX1;PMAIP1;FADD;SMAD2;TGFB2;SMAD4;GSTM1;TGFB1;SMAD3;TGFB3;WNT3A;NFKB1;PTK2;IL2;IL4;NFKBIA;BMP4;BMP2;IL6;CXCL12;CDK6;CDK4;CDK2;GNAS;GRB2;FGFR2;BCL2L1;NFE2L2;FGFR1;RET;ALK;CDKN1A;CXCL8;FLT3;PTEN;SLC2A1;FASLG;BRCA2;IKBKB;CASP9;CASP7;CASP8;CASP3;RAC2;JAK2;HRAS;APAF1;CHUK;IFNGR1;IL15;MMP1;MMP2;IL13;FOS;TRAF1;MMP9;RHOA;IFNG;TRAF6;KIT;CRK;CEBPA;RALA;HDAC1;GSTP1;XIAP;CXCR4;PTGS2;CBL;DLL1;EGFR;RELA;CDC42;MAPK8;ERBB2;STAT4;STAT6;BAK1;IL12RB1;NQO1;NOS2;STAT1;EGF;STAT2;STAT3;MTOR;RAD51;CTNNB1;FAS;BAX;KRAS
## 2                                                                                                                                                 IL21;CXCL6;IL1RN;CD40;CSF3;CXCL9;CSF2;EDA;CXCL8;EPO;FASLG;CXCL1;PRL;CXCL13;CXCL3;TNF;CXCL2;CX3CL1;CXCL5;TNFSF13B;CCR9;TNFSF11;CCR7;CCR5;AMH;CCR3;CCR2;IL10;IL11;IL15;IFNGR1;IL13;IL18;NGF;IL17RA;TNFRSF1A;IL1A;IFNG;IL1B;LTB;IFNAR1;CX3CR1;CCL13;CCL11;CXCR4;TNFRSF11B;CXCR6;CXCR1;CCL7;CXCR3;CXCR2;CCL2;CCL1;CCL19;IL12RB1;CCL17;CCR1;CCL25;IL33;TGFB2;CCL22;TGFB1;TSLP;CCL21;TNFSF15;CCL20;TGFB3;LIF;PPBP;BMP7;IL2;IL4;BMP4;GH2;CXCL10;CXCL11;BMP2;IL6;CD4;CXCL12;LEP;CD27;FAS;IL17F;LTBR;INHA;IL17C;CCL27;IL17A;PF4
## 3                                                                                                                                                                                                                                                                                                                                                                CXCL6;CSF3;CXCL8;CSF2;TRADD;TNFAIP3;CXCL1;CXCL3;CXCL2;TNF;CXCL5;IKBKB;CASP8;TBK1;CASP3;CHUK;MMP1;MMP3;IL13;FOS;MMP9;IL17RA;MMP13;IFNG;IL1B;TRAF6;DEFB4A;S100A9;S100A7;CEBPB;CCL11;PTGS2;RELA;MAPK8;CCL7;CCL2;FADD;CCL17;JUND;CCL20;MAPK14;MUC5B;NFKB1;IL4;NFKBIA;CXCL10;IL6;LCN2;FOSB;IL17F;IL17C;IL17A
## 4                                                                                                                                                                                                                                                                                                            CDKN1A;CXCL8;ARAF;FASLG;TNF;CASP9;IKBKB;TBK1;CASP8;MYC;AKT2;CASP3;AKT1;JAK2;HRAS;MAP2K1;APAF1;CHUK;DDX58;IRAK4;TYK2;FOS;MMP9;TIRAP;CCNA2;CREB1;IRF3;TRAF6;IRF7;TP53;TLR4;TLR3;IFNAR1;ATF4;TLR2;SRC;RELA;MAPK8;IRAK1;STAT4;STAT6;FADD;SMAD2;TGFB2;SMAD4;TGFB1;SMAD3;TGFB3;STAT1;STAT2;STAT3;NFATC1;MAPK14;NFKB1;NFKBIA;MAVS;IL6;CDK2;FAS;BAX;GRB2;KRAS;MYD88
## 5                                                                                                                                                                                                                                                                                              CD86;CDKN1A;CSF2;CXCL8;TRADD;CXCL1;CXCL3;FGF2;CXCL2;ICAM1;CASP9;IKBKB;TBK1;CASP8;CCND1;MYC;AKT2;CASP3;AKT1;CCR5;JAK2;HRAS;CCR3;MAP2K1;SYK;CHUK;IFNGR1;TYK2;FOS;HLA-G;TNFRSF1A;HCK;CREB1;IRF3;IRF7;TP53;TLR3;IFNAR1;BECN1;SRC;PDGFB;PTGS2;HIF1A;RELA;C3;MAPK8;FADD;BAK1;LYN;CCR1;STAT1;STAT2;STAT3;NFATC1;MAPK14;NFKB1;MTOR;NFKBIA;RCAN1;IL6;CDK6;CDK4;FAS;BAX;CTNNB1;KRAS
## 6                                                                                                                                                                                                                                                                                                                      SCARB1;CDKN1A;CD81;TRADD;ARAF;FASLG;IFIT1;TNF;CASP9;IKBKB;TBK1;CASP8;CCND1;MYC;AKT2;CASP3;AKT1;HRAS;MAP2K1;RSAD2;APAF1;CHUK;DDX58;TYK2;PIAS1;TNFRSF1A;CLDN4;CLDN3;OAS1;IRF3;IFNG;TRAF6;IRF7;TP53;TLR3;IFNAR1;RELA;EGFR;SOCS3;RIPK1;FADD;BAK1;LDLR;EGF;STAT1;STAT2;MX1;STAT3;NFKB1;NFKBIA;CXCL10;OCLN;MAVS;CDK6;CDK4;CDK2;FAS;BAX;CTNNB1;GRB2;KRAS
GO_res <- enriched[['GO_Molecular_Function_2021']]
head(GO_res)
##                                      Term Overlap      P.value Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score
## 1          cytokine activity (GO:0005125)  61/173 3.155810e-40     2.098614e-37           0                    0  13.461367      1224.3673
## 2   receptor ligand activity (GO:0048018)  69/307 1.967964e-31     6.543481e-29           0                    0   7.192804       508.5538
## 3 chemokine receptor binding (GO:0042379)   27/50 1.496174e-24     3.316519e-22           0                    0  27.918715      1531.5964
## 4         chemokine activity (GO:0008009)   26/46 2.168043e-24     3.604371e-22           0                    0  30.883871      1682.8071
## 5  cytokine receptor binding (GO:0005126)  34/105 1.501517e-21     1.997018e-19           0                    0  11.459953       549.4796
## 6             kinase binding (GO:0019900)  70/461 3.129734e-21     3.468788e-19           0                    0   4.411563       208.2846
##                                                                                                                                                                                                                                                                                                                                                                                             Genes
## 1                                            CXCL6;CSF3;CXCL9;CSF2;CXCL8;EPO;CXCL1;HMGB1;CXCL13;CXCL3;TNF;FGF2;CXCL2;CX3CL1;CXCL5;TNFSF11;TIMP1;IL10;IL11;IL15;WNT5A;ADIPOQ;IL18;NRG1;MIF;IL1A;IFNG;IL1B;CCL13;CCL11;TNFRSF11B;CCL7;CCL2;CCL1;CCL19;CCL17;CCL25;IL33;TGFB2;TGFB1;CCL22;TSLP;CCL21;TGFB3;WNT3A;CCL20;LIF;PPBP;BMP7;IL2;IL4;BMP4;CXCL10;CXCL11;BMP2;IL6;CXCL12;IL17F;INHA;CCL27;PF4
## 2                          CSF3;CXCL9;CSF2;EDA;EPO;CXCL1;PRL;HMGB1;CXCL13;TNF;FGF2;CX3CL1;TNFSF13B;LGALS3;FGF7;TNFSF11;TIMP1;AMH;IL10;IL11;IL15;HGF;ADIPOQ;WNT5A;IL18;APOA1;NRG1;MIF;NGF;PGF;BTC;IL1A;IFNG;IL1B;DEFB4A;HBEGF;CCL11;PTH;PDGFB;TNFRSF11B;PTN;NTS;INS;NPY;PPY;CCL25;IL33;TGFB2;TGFB1;TSLP;TGFB3;WNT3A;BDNF;EGF;LIF;CCK;BMP7;IL2;IL4;BMP4;GH2;POMC;CXCL10;BMP2;IL6;LEP;IL17F;INHA;VIP
## 3                                                                                                                                                                                                                               CX3CR1;CXCL6;CCL13;CXCL9;CXCL8;CCL11;CXCL1;CXCL13;CXCL3;CXCL2;CX3CL1;CXCL5;CCL7;CCL2;CCL1;CCL19;CCL17;CCL25;CCL22;CCL21;CCL20;PPBP;CXCL10;CXCL11;CXCL12;CCL27;PF4
## 4                                                                                                                                                                                                                                      CCL13;CXCL6;CXCL9;CXCL8;CCL11;CXCL1;CXCL13;CXCL3;CXCL2;CX3CL1;CXCL5;CCL7;CCL2;CCL1;CCL19;CCL17;CCL25;CCL22;CCL21;CCL20;PPBP;CXCL10;CXCL11;CXCL12;CCL27;PF4
## 5                                                                                                                                                                                                             IL21;CSF3;IL1RN;EPO;PRL;PYCARD;TNFSF11;FADD;CCL19;JAK2;IL12RB1;SMAD2;IL10;CCL25;IL11;TGFB2;SMAD3;TSLP;SYK;CCL21;LIF;IL18;MIF;TYK2;PGF;IL2;IL4;GH2;ADAM17;IL6;CXCL12;TRAF6;IL1B;TLR9
## 6 CDKN1A;TFRC;TRADD;ILK;HSPB1;PARK7;FOXM1;IKBKB;CASP9;CCND1;RAC2;CASP1;JAK2;CHIA;PARP1;RPS6;RHOG;ADAM10;IRAK3;IRAK4;RHOC;CDC25A;RHOA;RHOB;CCNA2;FGR;CEACAM1;TRAF6;VDAC1;MAPT;SQSTM1;CRK;TP53;ATF4;CEBPA;BECN1;SRC;MVP;PLG;IQGAP1;NOD2;PTN;FOXO3;HIF1A;EGFR;RELA;TTN;RELB;CDC42;CCNB1;SOCS1;IRAK1;RPS3;PTPN1;SMAD3;CAV1;PLK1;STAT3;CDC6;EEF2;IRGM;PTK2;CYLD;MAVS;CD4;TOLLIP;CTNNB1;FAS;GRB2;BCL2L1
## Plot Enrichment result
p <- plotEnrich(enriched[['KEGG_2019_Human']] %>% filter(Adjusted.P.value < 0.05),
           showTerms = 20, numChar = 40, y = "Count", orderBy = "P.value") + 
  scale_fill_gradientn(colours = rev(wes_palette("Zissou1", 10, type = "continuous")))


p

As shown above, Y axis shows the enriched terms of your input genes. X axis shows the number of input genes in the enriched terms.


5.7 Session info

devtools::session_info()
## ─ Session info ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 3.6.3 (2020-02-29)
##  os       Ubuntu 16.04.7 LTS
##  system   x86_64, linux-gnu
##  ui       RStudio
##  language (EN)
##  collate  en_IN.UTF-8
##  ctype    en_IN.UTF-8
##  tz       Asia/Hong_Kong
##  date     2022-11-09
##  rstudio  1.1.419 (server)
##  pandoc   2.7.3 @ /usr/bin/ (via rmarkdown)
## 
## ─ Packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  ! package              * version    date (UTC) lib source
##    abind                  1.4-5      2016-07-21 [1] CRAN (R 3.6.3)
##    ade4                   1.7-17     2021-06-17 [1] CRAN (R 3.6.3)
##    ALDEx2               * 1.18.0     2019-10-29 [1] Bioconductor
##    annotate               1.64.0     2019-10-29 [1] Bioconductor
##    AnnotationDbi        * 1.58.0     2022-04-26 [1] Bioconductor
##    ape                    5.5        2021-04-25 [1] CRAN (R 3.6.3)
##    assertthat             0.2.1      2019-03-21 [2] CRAN (R 3.6.3)
##    backports              1.4.1      2021-12-13 [1] CRAN (R 3.6.3)
##    base64enc              0.1-3      2015-07-28 [2] CRAN (R 3.6.3)
##    bayesm                 3.1-4      2019-10-15 [1] CRAN (R 3.6.3)
##    biglm                  0.9-2.1    2020-11-27 [1] CRAN (R 3.6.3)
##    Biobase              * 2.46.0     2019-10-29 [2] Bioconductor
##    BiocGenerics         * 0.32.0     2019-10-29 [2] Bioconductor
##    BiocParallel         * 1.20.1     2019-12-21 [2] Bioconductor
##    biomformat             1.14.0     2019-10-29 [1] Bioconductor
##    Biostrings             2.54.0     2019-10-29 [1] Bioconductor
##    bit                    4.0.4      2020-08-04 [1] CRAN (R 3.6.3)
##    bit64                  4.0.5      2020-08-30 [1] CRAN (R 3.6.3)
##    bitops                 1.0-7      2021-04-24 [1] CRAN (R 3.6.3)
##    blob                   1.2.2      2021-07-23 [1] CRAN (R 3.6.3)
##    bookdown               0.24       2021-09-02 [1] CRAN (R 3.6.3)
##    brio                   1.1.3      2021-11-30 [2] CRAN (R 3.6.3)
##    broom                  0.7.12     2022-01-28 [1] CRAN (R 3.6.3)
##    bslib                  0.3.1      2021-10-06 [1] CRAN (R 3.6.3)
##    cachem                 1.0.5      2021-05-15 [1] CRAN (R 3.6.3)
##    callr                  3.7.0      2021-04-20 [2] CRAN (R 3.6.3)
##    car                    3.0-12     2021-11-06 [1] CRAN (R 3.6.3)
##    carData                3.0-4      2020-05-22 [1] CRAN (R 3.6.3)
##    caTools                1.18.2     2021-03-28 [1] CRAN (R 3.6.3)
##    cellranger             1.1.0      2016-07-27 [1] CRAN (R 3.6.3)
##    checkmate              2.0.0      2020-02-06 [1] CRAN (R 3.6.3)
##    circlize             * 0.4.13     2021-06-09 [1] CRAN (R 3.6.3)
##    cli                    3.1.0      2021-10-27 [1] CRAN (R 3.6.3)
##    clue                   0.3-59     2021-04-16 [1] CRAN (R 3.6.3)
##    cluster                2.1.0      2019-06-19 [2] CRAN (R 3.6.3)
##    coda                   0.19-4     2020-09-30 [1] CRAN (R 3.6.3)
##    codetools              0.2-16     2018-12-24 [2] CRAN (R 3.6.3)
##    coin                   1.4-2      2021-10-08 [1] CRAN (R 3.6.3)
##    colorspace             2.0-2      2021-06-24 [1] CRAN (R 3.6.3)
##    ComplexHeatmap       * 2.2.0      2019-10-29 [1] Bioconductor
##    compositions           2.0-2      2021-07-14 [1] CRAN (R 3.6.3)
##    cowplot              * 1.1.1      2020-12-30 [1] CRAN (R 3.6.3)
##    crayon                 1.5.0      2022-02-14 [1] CRAN (R 3.6.3)
##    curl                   4.3.2      2021-06-23 [2] CRAN (R 3.6.3)
##    dada2                * 1.14.1     2020-02-22 [1] Bioconductor
##    data.table           * 1.14.0     2021-02-21 [1] CRAN (R 3.6.3)
##    DBI                    1.1.1      2021-01-15 [1] CRAN (R 3.6.3)
##    dbplyr                 2.1.1      2021-04-06 [1] CRAN (R 3.6.3)
##    DelayedArray         * 0.12.3     2020-04-09 [2] Bioconductor
##    DelayedMatrixStats     1.8.0      2019-10-29 [1] Bioconductor
##    DEoptimR               1.0-9      2021-05-24 [1] CRAN (R 3.6.3)
##    desc                   1.4.1      2022-03-06 [2] CRAN (R 3.6.3)
##    DESeq2               * 1.26.0     2019-10-29 [1] Bioconductor
##    devtools               2.4.3      2021-11-30 [1] CRAN (R 3.6.3)
##    digest                 0.6.29     2021-12-01 [1] CRAN (R 3.6.3)
##    dplyr                * 1.0.6      2021-05-05 [1] CRAN (R 3.6.3)
##    edgeR                  3.28.1     2020-02-26 [1] Bioconductor
##    ellipsis               0.3.2      2021-04-29 [1] CRAN (R 3.6.3)
##    EnhancedVolcano      * 1.4.0      2019-10-29 [1] Bioconductor
##    enrichR              * 3.0        2021-02-02 [1] CRAN (R 3.6.3)
##    evaluate               0.15       2022-02-18 [2] CRAN (R 3.6.3)
##    fansi                  1.0.2      2022-01-14 [1] CRAN (R 3.6.3)
##    farver                 2.1.0      2021-02-28 [2] CRAN (R 3.6.3)
##    fastmap                1.1.0      2021-01-25 [1] CRAN (R 3.6.3)
##    fdrtool                1.2.17     2021-11-13 [1] CRAN (R 3.6.3)
##    forcats              * 0.5.1      2021-01-27 [1] CRAN (R 3.6.3)
##    foreach                1.5.2      2022-02-02 [2] CRAN (R 3.6.3)
##    foreign                0.8-75     2020-01-20 [2] CRAN (R 3.6.3)
##    formatR                1.12       2022-03-31 [2] CRAN (R 3.6.3)
##    Formula                1.2-4      2020-10-16 [1] CRAN (R 3.6.3)
##    fs                     1.5.2      2021-12-08 [1] CRAN (R 3.6.3)
##    futile.logger          1.4.3      2016-07-10 [2] CRAN (R 3.6.3)
##    futile.options         1.0.1      2018-04-20 [2] CRAN (R 3.6.3)
##    genefilter             1.68.0     2019-10-29 [1] Bioconductor
##    geneplotter            1.64.0     2019-10-29 [1] Bioconductor
##    generics               0.1.2      2022-01-31 [1] CRAN (R 3.6.3)
##    GenomeInfoDb         * 1.22.1     2020-03-27 [2] Bioconductor
##    GenomeInfoDbData       1.2.2      2020-08-24 [2] Bioconductor
##    GenomicAlignments      1.22.1     2019-11-12 [1] Bioconductor
##    GenomicRanges        * 1.38.0     2019-10-29 [2] Bioconductor
##    getopt                 1.20.3     2019-03-22 [1] CRAN (R 3.6.3)
##    GetoptLong             1.0.5      2020-12-15 [1] CRAN (R 3.6.3)
##    GGally               * 2.1.2      2021-06-21 [1] CRAN (R 3.6.3)
##    ggbipart             * 0.1.2      2022-07-20 [1] Github (pedroj/bipartite_plots@162f577)
##    ggExtra              * 0.9        2019-08-27 [1] CRAN (R 3.6.3)
##    ggplot2              * 3.3.5      2021-06-25 [1] CRAN (R 3.6.3)
##    ggpubr               * 0.4.0      2020-06-27 [1] CRAN (R 3.6.3)
##    ggrepel              * 0.9.1      2021-01-15 [2] CRAN (R 3.6.3)
##    ggsci                * 2.9        2018-05-14 [1] CRAN (R 3.6.3)
##    ggsignif               0.6.3      2021-09-09 [1] CRAN (R 3.6.3)
##    glmnet                 4.1-2      2021-06-24 [1] CRAN (R 3.6.3)
##    GlobalOptions          0.1.2      2020-06-10 [1] CRAN (R 3.6.3)
##    glue                   1.6.1      2022-01-22 [1] CRAN (R 3.6.3)
##    GMPR                   0.1.3      2021-05-17 [1] local
##    gplots                 3.1.1      2020-11-28 [1] CRAN (R 3.6.3)
##    graph                  1.64.0     2019-10-29 [1] Bioconductor
##    gridExtra              2.3        2017-09-09 [2] CRAN (R 3.6.3)
##    gtable                 0.3.0      2019-03-25 [2] CRAN (R 3.6.3)
##    gtools                 3.9.2      2021-06-06 [1] CRAN (R 3.6.3)
##    haven                  2.4.1      2021-04-23 [1] CRAN (R 3.6.3)
##    highr                  0.9        2021-04-16 [1] CRAN (R 3.6.3)
##    Hmisc                  4.5-0      2021-02-28 [1] CRAN (R 3.6.3)
##    hms                    1.1.1      2021-09-26 [1] CRAN (R 3.6.3)
##    htmlTable              2.3.0      2021-10-12 [1] CRAN (R 3.6.3)
##    htmltools              0.5.2      2021-08-25 [1] CRAN (R 3.6.3)
##    htmlwidgets            1.5.4      2021-09-08 [2] CRAN (R 3.6.3)
##    httpuv                 1.6.1      2021-05-07 [1] CRAN (R 3.6.3)
##    httr                   1.4.3      2022-05-04 [2] CRAN (R 3.6.3)
##    hwriter                1.3.2      2014-09-10 [1] CRAN (R 3.6.3)
##    igraph                 1.3.1      2022-04-20 [2] CRAN (R 3.6.3)
##    IHW                    1.14.0     2019-10-29 [1] Bioconductor
##    IRanges              * 2.20.2     2020-01-13 [2] Bioconductor
##    iterators              1.0.14     2022-02-05 [2] CRAN (R 3.6.3)
##    jpeg                   0.1-9      2021-07-24 [1] CRAN (R 3.6.3)
##    jquerylib              0.1.4      2021-04-26 [1] CRAN (R 3.6.3)
##    jsonlite               1.8.0      2022-02-22 [2] CRAN (R 3.6.3)
##    KEGGgraph              1.46.0     2019-10-29 [1] Bioconductor
##    KEGGREST               1.26.1     2019-11-06 [1] Bioconductor
##    KernSmooth             2.23-16    2019-10-15 [2] CRAN (R 3.6.3)
##    knitr                  1.36       2021-09-29 [1] CRAN (R 3.6.3)
##    labeling               0.4.2      2020-10-20 [2] CRAN (R 3.6.3)
##    lambda.r               1.2.4      2019-09-18 [2] CRAN (R 3.6.3)
##    later                  1.3.0      2021-08-18 [2] CRAN (R 3.6.3)
##    lattice              * 0.20-38    2018-11-04 [2] CRAN (R 3.6.3)
##    latticeExtra           0.6-29     2019-12-19 [1] CRAN (R 3.6.3)
##    lazyeval               0.2.2      2019-03-15 [2] CRAN (R 3.6.3)
##    libcoin                1.0-9      2021-09-27 [1] CRAN (R 3.6.3)
##    lifecycle              1.0.1      2021-09-24 [1] CRAN (R 3.6.3)
##    limma                  3.42.2     2020-02-03 [2] Bioconductor
##    locfit                 1.5-9.4    2020-03-25 [1] CRAN (R 3.6.3)
##    lpsymphony             1.14.0     2019-10-29 [1] Bioconductor (R 3.6.3)
##    lubridate              1.7.10     2021-02-26 [1] CRAN (R 3.6.3)
##    Maaslin2               1.7.3      2022-03-23 [1] Github (biobakery/maaslin2@8d090e4)
##    magrittr             * 2.0.2      2022-01-26 [1] CRAN (R 3.6.3)
##    MASS                   7.3-54     2021-05-03 [1] CRAN (R 3.6.3)
##    Matrix                 1.3-4      2021-06-01 [1] CRAN (R 3.6.3)
##    matrixStats          * 0.60.0     2021-07-26 [1] CRAN (R 3.6.3)
##    mbzinb                 0.2        2021-06-23 [1] local
##    memoise                2.0.1      2021-11-26 [2] CRAN (R 3.6.3)
##    metagenomeSeq          1.28.2     2020-02-03 [1] Bioconductor
##    metamicrobiomeR        1.1        2021-02-03 [1] local
##    mgcv                   1.8-31     2019-11-09 [2] CRAN (R 3.6.3)
##    microbiome             1.8.0      2019-10-29 [1] Bioconductor
##    mime                   0.12       2021-09-28 [2] CRAN (R 3.6.3)
##    miniUI                 0.1.1.1    2018-05-18 [1] CRAN (R 3.6.3)
##    modelr                 0.1.8      2020-05-19 [1] CRAN (R 3.6.3)
##    modeltools             0.2-23     2020-03-05 [1] CRAN (R 3.6.3)
##    multcomp               1.4-17     2021-04-29 [1] CRAN (R 3.6.3)
##    multtest               2.42.0     2019-10-29 [2] Bioconductor
##    munsell                0.5.0      2018-06-12 [2] CRAN (R 3.6.3)
##    mvtnorm                1.1-3      2021-10-08 [1] CRAN (R 3.6.3)
##    network              * 1.17.1     2021-06-14 [1] CRAN (R 3.6.3)
##    nlme                   3.1-144    2020-02-06 [2] CRAN (R 3.6.3)
##    nnet                   7.3-12     2016-02-02 [2] CRAN (R 3.6.3)
##    optparse               1.7.1      2021-10-08 [1] CRAN (R 3.6.3)
##    org.Hs.eg.db         * 3.10.0     2021-12-08 [1] Bioconductor
##    pathview             * 1.26.0     2019-10-29 [1] Bioconductor
##    pcaPP                  1.9-74     2021-04-23 [1] CRAN (R 3.6.3)
##    permute              * 0.9-5      2019-03-12 [1] CRAN (R 3.6.3)
##    phyloseq             * 1.30.0     2019-10-29 [1] Bioconductor
##    pillar                 1.7.0      2022-02-01 [1] CRAN (R 3.6.3)
##    pkgbuild               1.3.1      2021-12-20 [2] CRAN (R 3.6.3)
##    pkgconfig              2.0.3      2019-09-22 [2] CRAN (R 3.6.3)
##    pkgload                1.2.4      2021-11-30 [2] CRAN (R 3.6.3)
##    plotly               * 4.10.0     2021-10-09 [1] CRAN (R 3.6.3)
##    plyr                   1.8.7      2022-03-24 [2] CRAN (R 3.6.3)
##    png                    0.1-7      2013-12-03 [1] CRAN (R 3.6.3)
##    prettyunits            1.1.1      2020-01-24 [2] CRAN (R 3.6.3)
##    processx               3.5.3      2022-03-25 [2] CRAN (R 3.6.3)
##    promises               1.2.0.1    2021-02-11 [2] CRAN (R 3.6.3)
##    protoclust             1.6.3      2019-01-31 [1] CRAN (R 3.6.3)
##    ps                     1.7.0      2022-04-23 [2] CRAN (R 3.6.3)
##    pscl                   1.5.5      2020-03-07 [1] CRAN (R 3.6.3)
##    purrr                * 0.3.4      2020-04-17 [2] CRAN (R 3.6.3)
##    qvalue                 2.18.0     2019-10-29 [1] Bioconductor
##    R6                     2.5.1      2021-08-19 [1] CRAN (R 3.6.3)
##    RAIDA                  1.0        2021-06-23 [1] local
##    ranacapa               0.1.0      2021-06-18 [1] Github (gauravsk/ranacapa@58c0cab)
##    RColorBrewer         * 1.1-3      2022-04-03 [2] CRAN (R 3.6.3)
##    Rcpp                 * 1.0.7      2021-07-07 [1] CRAN (R 3.6.3)
##    RcppParallel           5.1.4      2021-05-04 [1] CRAN (R 3.6.3)
##    RCurl                  1.98-1.6   2022-02-08 [2] CRAN (R 3.6.3)
##    readr                * 2.0.0      2021-07-20 [1] CRAN (R 3.6.3)
##    readxl               * 1.3.1      2019-03-13 [1] CRAN (R 3.6.3)
##    remotes                2.4.2      2021-11-30 [1] CRAN (R 3.6.3)
##    reprex                 2.0.1      2021-08-05 [1] CRAN (R 3.6.3)
##    reshape                0.8.9      2022-04-12 [1] CRAN (R 3.6.3)
##    reshape2             * 1.4.4      2020-04-09 [2] CRAN (R 3.6.3)
##    Rgraphviz              2.30.0     2019-10-29 [1] Bioconductor
##    rhdf5                  2.30.1     2019-11-26 [1] Bioconductor
##    Rhdf5lib               1.8.0      2019-10-29 [1] Bioconductor
##    rJava                  1.0-5      2021-09-24 [1] CRAN (R 3.6.3)
##    rjson                  0.2.20     2018-06-08 [1] CRAN (R 3.6.3)
##  R rlang                  1.0.2      <NA>       [2] <NA>
##    rmarkdown              2.11       2021-09-14 [1] CRAN (R 3.6.3)
##    robustbase             0.93-9     2021-09-27 [1] CRAN (R 3.6.3)
##    rpart                  4.1-15     2019-04-12 [2] CRAN (R 3.6.3)
##    rprojroot              2.0.2      2020-11-15 [1] CRAN (R 3.6.3)
##    Rsamtools              2.2.3      2020-02-23 [1] Bioconductor
##    RSQLite                2.2.7      2021-04-22 [1] CRAN (R 3.6.3)
##    rstatix                0.7.0      2021-02-13 [1] CRAN (R 3.6.3)
##    rstudioapi             0.13       2020-11-12 [2] CRAN (R 3.6.3)
##    Rtsne                  0.15       2018-11-10 [1] CRAN (R 3.6.3)
##    rvest                  1.0.2      2021-10-16 [1] CRAN (R 3.6.3)
##    S4Vectors            * 0.24.4     2020-04-09 [2] Bioconductor
##    sandwich               3.0-1      2021-05-18 [1] CRAN (R 3.6.3)
##    sass                   0.4.0      2021-05-12 [1] CRAN (R 3.6.3)
##    scales                 1.2.0      2022-04-13 [2] CRAN (R 3.6.3)
##    seqinr               * 4.2-8      2021-06-09 [1] CRAN (R 3.6.3)
##    sessioninfo            1.2.2      2021-12-06 [2] CRAN (R 3.6.3)
##    shape                  1.4.6      2021-05-19 [1] CRAN (R 3.6.3)
##    shiny                  1.7.1      2021-10-02 [1] CRAN (R 3.6.3)
##    ShortRead              1.44.3     2020-02-03 [1] Bioconductor
##    slam                   0.1-49     2021-11-17 [1] CRAN (R 3.6.3)
##    sna                    2.6        2020-10-06 [1] CRAN (R 3.6.3)
##    statnet.common         4.5.0      2021-06-05 [1] CRAN (R 3.6.3)
##    stringi                1.7.4      2021-08-25 [1] CRAN (R 3.6.3)
##    stringr              * 1.4.0      2019-02-10 [2] CRAN (R 3.6.3)
##    SummarizedExperiment * 1.16.1     2019-12-19 [2] Bioconductor
##    survival               3.1-8      2019-12-03 [2] CRAN (R 3.6.3)
##    tensorA                0.36.2     2020-11-19 [1] CRAN (R 3.6.3)
##    testthat               3.1.4      2022-04-26 [2] CRAN (R 3.6.3)
##    textshape              1.7.3      2021-05-28 [1] CRAN (R 3.6.3)
##    TH.data                1.1-0      2021-09-27 [1] CRAN (R 3.6.3)
##    tibble               * 3.1.6      2021-11-07 [1] CRAN (R 3.6.3)
##    tidyr                * 1.2.0      2022-02-01 [1] CRAN (R 3.6.3)
##    tidyselect             1.1.1      2021-04-30 [1] CRAN (R 3.6.3)
##    tidyverse            * 1.3.1      2021-04-15 [1] CRAN (R 3.6.3)
##    tzdb                   0.2.0      2021-10-27 [1] CRAN (R 3.6.3)
##    UpSetR                 1.4.0      2019-05-22 [1] CRAN (R 3.6.3)
##    usethis                2.1.6      2022-05-25 [2] CRAN (R 3.6.3)
##    utf8                   1.2.2      2021-07-24 [1] CRAN (R 3.6.3)
##    vctrs                  0.3.8      2021-04-29 [1] CRAN (R 3.6.3)
##    vegan                * 2.5-7      2020-11-28 [1] CRAN (R 3.6.3)
##    VennDiagram            1.7.1      2021-12-02 [1] CRAN (R 3.6.3)
##    viridisLite            0.4.0      2021-04-13 [2] CRAN (R 3.6.3)
##    vroom                  1.5.7      2021-11-30 [1] CRAN (R 3.6.3)
##    wesanderson          * 0.3.6.9000 2021-07-21 [1] Github (karthik/wesanderson@651c944)
##    withr                  2.4.3      2021-11-30 [1] CRAN (R 3.6.3)
##    Wrench                 1.4.0      2019-10-29 [1] Bioconductor
##    xfun                   0.23       2021-05-15 [1] CRAN (R 3.6.3)
##    xlsx                 * 0.6.5      2020-11-10 [1] CRAN (R 3.6.3)
##    xlsxjars               0.6.1      2014-08-22 [1] CRAN (R 3.6.3)
##    XMAS                 * 0.0.0.9000 2022-03-23 [1] local
##    XMAS2                  2.1.8.3    2022-11-08 [2] local
##    XML                    3.99-0.3   2020-01-20 [1] CRAN (R 3.6.3)
##    xml2                   1.3.3      2021-11-30 [2] CRAN (R 3.6.3)
##    xtable                 1.8-4      2019-04-21 [1] CRAN (R 3.6.3)
##    XVector                0.26.0     2019-10-29 [2] Bioconductor
##    xviz                 * 1.1.0      2021-01-14 [1] local
##    yaml                   2.2.2      2022-01-25 [1] CRAN (R 3.6.3)
##    zlibbioc               1.32.0     2019-10-29 [2] Bioconductor
##    zoo                    1.8-9      2021-03-09 [1] CRAN (R 3.6.3)
## 
##  [1] /share/home/tongbangzhuo/R/x86_64-pc-linux-gnu-library/3.6
##  [2] /opt/R-3.6.3/lib/R/library
## 
##  R ── Package was removed from disk.
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────